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ABSTRACT: The atom-bond connectivity index plays a key role in correlating the physical-chemical properties
and molecular structures of some families of compound. The general atom-bond connectivity index is a
generalization of the atom-bond connectivity index. In this paper, we obtain some bounds of the general atom-
bond connectivity index for connected graphs with given clique number and trees with given pendant number,
and characterize the corresponding extremal graphs.
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I. Introduction
The atom-bond connectivity index plays a key role in correlating the physical-chemical properties and

molecular structures of some families of compound. The heat of formation in alkanes is predicted or reproduced
by [7, 10]. The differences in the energy of linear and branched alkanes both qualitatively and quantitatively are
explained by [6]. The extremal values of the atom-bond connectivity index among graphs under various
constrains have been extensively explored by [1,3,5,9,11,12,13,15]. Let � be a simple graph with vertex set
�(�) and edge set �(�). Let �(�) be the degree of � ∈ �(�). [8] Considered the following generalization :

A���(�) = ��∈�(�)
�(�)+�(�)−2

�(�)�(�)

�
�

for any α ∈ � \ 0 , and called it the general atom-bond connectivity index. The optimization problems for the
general atom-bond connectivity index have been and are being studied recently, see [2,4,8,16]. Characterizing
such graphs with maximum and minimum general atom-bond connectivity index is an interesting work. This
motivates our research on the general atom-bond connectivity index for connected graphs with given clique
number and trees with given pendant number.

II. Results for connected graphs with given clique number
Let �(�) be the set of neighbors of � ∈ �(�). Denote by ∆ and δ the maximum and minimum vertex

degree in � respectively. Denote by �� the complete graphs of order � . The number of vertices of the largest
clique in a graph is called its clique number. For a positive integer �, a graph is called balanced complete q-
partite graph if it is a complete q-partite in which all classes are of equal cardinality.

In order to prove our result, the following lemmas are needed.
Lemma 1([14]) Let � be a connected ��+1-free graph of order � and size �. Then

� ≤ 1 − 1
�

�2

2
with equality iff � is a balanced complete q-partite graph.
Lemma 2 Let �(�, �)= �+�−2

��

�
, where �, � ≥ 1 and α ∈ R \ 0 . Then

(i) If α < 0, then �(1, �) is decreasing on 2, + ∞ . If α > 0, then �(1, �) is increasing on 2, + ∞ .
(ii) �(2, �) = 1

2

α
for every � ≥ 1.

(iii) If α < 0, then �(�, �) is increasing in each variable on 2, + ∞ . If α > 0, then �(�, �) is decreasing in
each variable on 2, + ∞ .

Proof. (ii) is direct. Note that �(1, �) = 1 − 1
�

α
and 1 − 1

�
is increasing for � ≥ 2. Thus (i) holds.
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Recall that �(�, �)= �+�−2
��

�
= 1

�
+ 1

�
1 − 2

�

�
. Also note that 1 − 2

�
≥0 for � ≥ 2 and 1

�
+ 1

�
1 − 2

�
is

decreasing for � ≥ 2. If α < 0, then �(�, �) is increasing for � ≥ 2. If α > 0, then �(�, �) is decreasing for
� ≥ 2. By symmetry, the case of � also holds. Thus (iii) holds. ∎

Now we give an upper bound on the general atom-bond connectivity index for connected graphs with
given clique number.

Theorem 3 Let � be a connected graph of order � with clique number �. If α < 0, then
���� � ≤ �2 �−1

2�
2 ∆−1

∆2

�
;

If α > 0, then for δ ≥ 2,

���� � ≤ ∆ ∆+�−2
∆�

�
+ (�−1)�2

2�
− ∆ 2 �−1

�2

�

with equalities iff � is a balanced complete �-partite graph.
Proof. If α < 0, then for any ���� ∈ �(�), by Lemma 2 (iii),

� � �� , � �� ≤ � ∆, ∆ = 2 ∆−1
∆2

�

with equality iff � �� =� �� = ∆. Thus

����∈�(�) � � �� , � �� ≤ � 2 ∆−1
∆2

�
� (1)

with equality iff � �� =� �� = ∆ for any ���� ∈ �(�).
If α > 0, then let ∆ = � �� for some �� ∈ �(�), where 1 ≤ � ≤ �,

��:����∈�(�) � � �� , � �� =� ��:����∈�(�)
1
∆

+ 1
� ��

1 − 2
∆

�
� ≤ ∆ ∆+�−2

∆�

�
(2)

with equality iff � �� =δ for every �� ∈ � �� . Recall that δ ≥ 2. By Lemma 2.2 (iii), if α > 0, then for any
���� ∈ �(�),

� � �� , � �� ≤ � �, � = 2 �−1
�2

�

with equality iff � �� =� �� = δ. Thus

��:����∈�(�)
�,�≠�

� � �� , � �� ≤ � − ∆ 2 �−1
�2

�
� (3)

with equality iff � �� =� �� = δ for any ���� ∈ �(�).

Note that � has clique number �. Then � is a ��+1-free graph. By Lemma 1,

� ≤ �2 �−1
2�

(4)

with equality iff � is a balanced complete �-partite graph.

If α < 0, then by inequalities (1) and (4),

���α(�) ≤ �2 �−1
2�

2 ∆−1
∆2

�

with equality iff � is a balanced complete �-partite graph.

If α > 0, then by inequalities (2) , (3) and (4),

���α(�) ≤
����∈�(�)

� � �� , � ���

≤ ��:����∈�(�) � � �� , � �� +� ��:����∈�(�)
�,�≠�

� � �� , � ���

≤ ∆ ∆+�−2
∆�

�
+ � − ∆ 2 �−1

�2

�

≤ ∆ ∆+�−2
∆�

�
+ �2 �−1

2�
− ∆ 2 �−1

�2

�

with equality iff � is a balanced complete �-partite graph. ∎
By Lemma 2.2 (iii), the following conclusion directly comes from Theorem 3.
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Corollary 4 Let � be a connected graph of order � with clique number �. If α < 0, then
���� � ≤ �2 �−1

2�
2 ∆−1

∆2

�
;

If α > 0, then for δ ≥ 2,

���� � ≤ �2 �−1
2�

2 �−1
�2

�

with equalities iff � is a balanced complete �-partite graph.

III. Results for trees with given pendant number
For a positive integer � ≥ 4, let �nbe the set of trees of order �. Denote by �� the star of order �.

The number of pendant vertices in a graph is called its pendant number. For a positive integer 2 ≤ � ≤ � − 2,
let ��,� be the set of trees of order � with pendant number �. Let ��,� be the tree formed from the path on � −
� + 1vertices by attaching � − 1 pendant vertices to an end vertices. For a tree � and a vertex set �0 ⊆ �(�),
� − �0 denotes the tree formed from � by deleting the vertices �0 and their incident edges. Let �1(�) =
�|�� ∈ �(�), �(�) = 1 .

The following conclusion directly comes from Lemma 2.
Lemma 5 For a fixed integer � ≥1, let �(�, �) = �+�−2

��

α
− �+�−�−2

� �−�

α
, where x ≥ 0 and y ≥ k. Then

(i) If α < 0, then �(1, �) < 0. If α > 0, then �(1, �) > 0.
(ii) �(2, �) =0.
(iii) If α < 0, then �(�, �) > 0 for � ≥ 3. If α > 0, then �(�, �) < 0 for � ≥ 3.
Lemma 6 Let � ∈ ��,� and � ∈ �(�), �ℎ��� �1(�) ≠ ∅. Then for α < 0,

���α(�) − ���α(� − �1(�)) ≥ �1(�)
� − 1

�

α

with equality iff �(�) = � and �(�) = 2 for any � ∈ �(�) \ �1(�).
Proof. Let � ∈ �(�), �ℎ��� �1(�) ≠ ∅. Clearly, �(�) ≥ 2. Since 2 ≤ � ≤ � − 2 , �(�) \ �1(�) contains one
vertex of degree at least two. Let �(�) \ �1(�) = �. By Lemma 5 (ii) and (iii),

�∈�(�)\�1(�) �(�(�), �(�)) ≥ 0� .
Thus

���α(�) − ���α(� − �1(�)) = �1(�) � 1, � � + �∈�(�)\�1(�) �(�(�), �(�))�
≥ �1(�) � 1, � �

≥ �1(�) � � −1
� �

α

with equalities iff �(�) = 2 for any � ∈ �(�) \ �1(�) . Since � has � pendant vertices, �(�) ≤ � . Note that
x−1

x

α

is decreasing for x ≥ 2. Thus

A��α(�) − ���α(� − �1(�)) ≥ �1(�) �−1
�

α

with equality iff �(�) = � and �(�) = 2 for any � ∈ �(�) \ �1(�). ∎

Theorem 7 Let � ∈ ��,�. Then for α < 0,

���α(�) ≥ � − 1 �−1
�

α
+ � − � 1

2

�

with equality iff � = ��,�.
Proof. If � = 2, then �=��=��,2. The result holds. Assume that � ≥ 3.

Take a vertex � ∈ �(�) such that �1(�) ≠ ∅ and �(�) ≥ 3 (If possible). By Lemma 6,
���α(�) ≥ ���α(� − �1(�)) + �1(�) �−1

�

α
(5)

with equality iff �(�) = � and �(�) = 2 for any � ∈ �(�) \ �1(�) in �.
It is clear that � − �1(�) is a tree with �1 pendant vertices, where � − �1(�) ≤ �1 ≤ � −

�1(�) +1 . Note that �(� − �1(�)) = � − �1(�) and �(� − �1(�)) = � − �1(�) −1. Let �1 = � −
�1(�). Similarly, Take a vertex � ∈ �(�1) such that �1(�) ≠ ∅ and �(�) ≥ 3 (If possible). By Lemma 6,

���α(�1) ≥ ���α(�1 − �1(�)) + �1(�) �1−1
�1

α
(6)

with equality iff �(�) = �1 and �(�) = 2 for any � ∈ �(�) \ �1(�) in �1 . Since �1 ≤ � , then �1−1
�1

α
≥

�−1
�

α
. Let �2 = �1 − �1(�). By inequalities (5) and (6),
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���α(�) ≥ ���α(�2) + � − �(�2) �−1
�

α
(7)

Continue the above operation until the final graph �∗ has no vertex � such that �1(�) ≠ ∅ and �(�) ≥ 3 .
Also note that each edge of �∗ has at least an end of degree two. Thus

���α(�) ≥ ���α(�∗) + � − �(�∗) �−1
�

α

≥ �(�∗) − 1 1
2

α
+ � − �(�∗) �−1

�

α
(8)

Since 2 ≤ � ≤ � − 2 , then the number of the edges with weigh �−1
�

with respect to the general atom-bond
connectivity index in � is less than or equal to � − 1. Hence − �(�∗) ≤ � − 1, that is, �(�∗) ≥ � − � + 1.
By lemma 2 (i), �−1

�

α
− 1

2

α
< 0. Thus

���α(�) ≥ � − 1 �−1
�

α
+ � − � 1

2

�

with equality iff � = ��,�. ∎
Lemma 8 Let � ∈ ��,�, �� ∈ �(�) and �(�) =1. Then for α > 0,

A��α(�) − ���α(� − �) ≤ � − 1 �−1
�

α
− � − 2 �−2

�−1

α

with equality iff � = ��,� and �(�) = �.
Proof. Take �� ∈ �(�) and �(�) = 1 . Clearly, 2≤ �(�) ≤ � . Since 2 ≤ � ≤ � − 2, �(�) \ � contains one
vertex of degree at least two. By Lemma 5 (i), (ii) and (iii),

���α(�) − ���α(� − �) = �(1, �(�)) +
�∈�(�)\{�}

�(�(�), �(�))�

≤ �(1, �(�))+�(2, �(�))+(�(�) −2)�(1, �(�))
= �(�)−1

�(�)

α
+(�(�) −2) �(�)−1

�(�)

α
− �(�)−2

�(�)−1

α

= (�(�) − 1) �(�)−1
�(�)

α
−(�(�) −2) �(�)−2

�(�)−1

α
(9)

with equality iff �(�) has exactly one vertex of degree two and �(�) − 1 vertices of degree one. Let �(�) =
� − 1 �−1

�

α
− � − 2 �−2

�−1

α
for � ≥2, where α > 0. Then

d�(�)
d�

= �−1
�

α
+ α � − 1 �−1

�

α−1 1
�2 − �−2

�−1

α
− α � − 2 �−2

�−1

α−1 1
�−1 2

= �−1
�

α
1 + α

�
− �−2

�−1

α
1 + α

�−1
(10)

Let �(�) = �−1
�

α
1 + α

�
for � ≥1, where α > 0. Then

d�(�)
d�

= α �−1
�

α−1 1
y2 1 + α

�
− �−1

�

α α
y2 = �−1

�

α−1 α(1+α)
y3 .

Clearly, d�(�)
d�

≥ 0 . Thus �(�) is increasing for � ≥ 1. By the equation (10), d�(�)
d�

≥ 0 and hence �(�) is
increasing for � ≥2. Recall that 2≤ �(�) ≤ �. By the inequality (9),

A��α(�) − ���α(� − �) ≤ � − 1 �−1
�

α
− � − 2 �−2

�−1

α

with equality iff � = ��,� and �(�) = �. ∎

Theorem 9 Let � ∈ ��,�. Then for α > 0,

���α(�) ≤ � − 1 �−1
�

α
+ � − � 1

2

�

with equality iff � = ��,�.
Proof.We argue by induction on �. It is trivial for � = 4. Suppose that � ≥ 5 and it holds for trees with order
� − 1. Let � ∈ ��,�, �� ∈ �(�) and �(�) =1. Now we consider the following two cases.
Case 1 �(�) =2.
Let �(�) = �, � . Then �(�) ≥2 and

���α(�) − ���α(� − �) =
1
2

α

+
1
2

α

−
�(�) − 1

�(�)

α

≤
1
2

α

with equality iff �(�) =2. Note that � − � contains � pendant vertices. If � = � − 2 , then � − � = ��−1 and
hence � = ��,�−2 . If � ≤ � − 3, then by the induction hypothesis,
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���α(�) ≤ ���α(� − �) +
1
2

α

≤ � − 1 �−1
�

α
+ � − 1 − � 1

2

�
+ 1

2

α

= � − 1 �−1
�

α
+ � − � 1

2

�

with equality iff � − � = ��−1,� and �(�) = 2, i.e., � = ��,� .
Case 2 �(�) ≥3.
Note that � ≥3 and � − � contains � − 1 pendant vertices. By Lemma 8,

���α(�) ≤ ���α(� − �) + � − 1 �−1
�

α
− � − 2 �−2

�−1

α
.

By the induction hypothesis,
���α(�) ≤ � − 2 �−2

�−1

α
+ � − 1 − (� − 1) 1

2

�
+ � − 1 �−1

�

α
− � − 2 �−2

�−1

α

= � − 1 �−1
�

α
+ � − � 1

2

�

with equality iff � − � = ��−1,�−1 and the degree of � in � − � is � − 1, i.e., � = ��,� . ∎

Lemma 10 Let ℎ(�) = � − 1 �−1
�

α
+ � − � 1

2

�
for 2 ≤ � ≤ � − 2. Then if α < 0, then ℎ(�) is decreasing;

if α > 0, then ℎ(�) is increasing.
Proof. Consider the derivative of ℎ(�), we have

dℎ(�)
d�

= α
�2

�−1
�

α−1
� − 1 + �−1

�

α
− 1

2

�
= 1 + α

�
�−1

�

α
− 1

2

�
(11)

If α < 0, then 1 + α
�

<1 and �−1
�

α
≤ 1

2

�
. By the equation (11), dℎ(�)

d�
< 0. Thus ℎ(�) is decreasing. If α >

0, then 1 + α
�

>1 and �−1
�

α
≥ 1

2

�
. By the equation (11), dℎ(�)

d�
> 0. Thus ℎ(�) is increasing. ∎

By Theorem 7, Theorem 9 and Lemma 10, we have the following.
Corollary 11 For � ≥ 6, let � ∈ ��. Then
(i) If α < 0 and � ∈ �� \ ��,�−2, �� , then

���α(�) > ���α(��,�−2) > ���α(��).
(ii) If α > 0 and � ∈ �� \ ��,�−2, �� , then

���α(�) < ���α(��,�−2) < ���α(��).
Proof. Let � be a tree with � pendant vertices, where 2 ≤ � ≤ � − 2. If α < 0, then by Theorem 7 and Lemma
10, ���α(�) ≥ ℎ(� − 2) with equality iff � = ��,�−2 . Note that

���α(��,�−2 ) = ℎ(� − 2) = �−3
�−2

α
� − 3 +2 1

2

�
> �−2

�−1

α
� − 1 = ���α(�� ).

Thus (i) holds. If α > 0, then similar as the case of α < 0, by Theorem 9 and Lemma 10, (ii) also holds. ∎

IV. Conclusion
This paper obtains on some bounds of the general atom-bond connectivity index for connected graphs

with given clique number and trees with given pendant number, and characterize the corresponding extremal
graphs. Moreover, among the trees with order n ≥ 6 , we determine such trees with the minimum and second
minimum general atom-bond connectivity index(���α ) for α < 0 , and the maximum and second maximum
general atom-bond connectivity index(���α) for α > 0. As a follow-up of this study, characterizing such graphs
with the maximum and minimum general atom-bond connectivity index is an interesting work.
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