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ABSTRACT: This paper is centered on the eigenvalue problem with homogeneous mixed boundary conditions 

and introduces a two-grid discretization scheme based on shifted inverse iteration for the discontinuous Galerkin 

method. It presents the interior penalty discontinuous Galerkin method for second-order elliptic problems with 

homogeneous mixed boundaries, along with an a priori error estimate. Building upon the a priori error estimate, 

it provides an error estimate for the proposed scheme and demonstrates that the approximate solution obtained 

can achieve optimal convergence order when the grid size satisfies certain relationships. Finally, numerical 

results are included to showcase the effectiveness of the approach. 
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I. INTRODUCTION  

Many scholars have conducted meaningful research on eigenvalue problems. In practical computations, 

we hope to obtain approximate solutions to problems with less CPU time without sacrificing accuracy. To meet 

this requirement, two-grid and multigrid discretization have been introduced in the finite element method, both of 

which are highly efficient. The two-grid discretization was first introduced by Xu [1] for non-symmetric and 

bilinear elliptic problems. In reference [2], Xu and Zhou first applied this approach to eigenvalue problems, and 

since then, many scholars have conducted in-depth research. In reference [3], a two-grid discretization and 

multigrid discretization scheme were established for self-adjoint elliptic differential operator eigenvalue problems. 

It also combined the finite element method with the shifted inverse iteration method to establish a two-grid 

discretization scheme based on inverse iteration. In reference [4], it was applied to Maxwell eigenvalue problems, 

in reference [5] it was applied to Stokes eigenvalue problems, and in reference [6], it was applied to integral 

operator eigenvalue problems, and so on. Using this method, solving an eigenvalue problem on a fine grid reduces 

to solving this problem on a coarse grid and solving a linear algebraic equation on a fine grid. Based on the above 

work, there is currently no research on the two-grid discretization of the shifted inverse iteration discontinuous 

Galerkin method for eigenvalue problems with homogeneous mixed boundary conditions. This paper mainly 

discusses the second-order elliptic eigenvalue problem with homogeneous mixed boundary conditions, presents 

its interior penalty discontinuous Galerkin method, establishes a priori error estimate, and then, based on the a 

priori error estimate, provides a two-grid discretization scheme based on shifted inverse iteration and gives an 

error estimate for the proposed scheme. 

 

II. BASIC THEORETICAL PREPARATION  

Let Ω ⊂ 𝑅2  be a bounded domain with a Lipschitz boundary ∂Ω, where ∂Ω = Γ𝐷 ∪ Γ𝑁 , let n be the 

outward unit normal vector of ∂Ω. Consider the eigenvalue problem with mixed boundary conditions: Find 𝜆 ∈ 𝐶 

and 𝑢 ∈ 𝐻Γ𝐷

1 (Ω), such that 

{

  −Δ𝑢 =  𝜆𝑢 ,         𝑖𝑛   Ω  ,
        𝑢 = 0 ,            𝑜𝑛  Γ𝐷 ,

       
∂𝑢

∂𝐧
= 0 ,            𝑜𝑛  Γ𝑁  .

                                                            (2.1) 

Denote 

(𝑢, 𝑣) = ∫  
Ω

𝑢𝑣𝑑𝑥 , 

and define a continuous bilinear form 

𝑎(𝑢 , 𝑣) = (∇𝑢 , ∇𝑣),      ∀𝑢 , 𝑣 ∈ 𝐻Γ𝐷

1 (Ω) .                                                  (2.2) 
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There exist two positive constants A and B independent of 𝑢, 𝑣 such that the bilinear form  𝑎(∙,∙) satisfies 

    
|𝑎(𝑢 , 𝑣)| ⩽ 𝐴 ∥ 𝑢 ∥1,Ω∥ 𝑣 ∥1,Ω  ,     ∀𝑢, 𝑣 ∈ 𝐻Γ𝐷

1 (Ω)

    𝑎(𝑣 , 𝑣) ⩾ 𝐵∥𝑣∥1,Ω
2 ,      ∀𝑣 ∈ 𝐻Γ𝐷

1 (Ω)
                                         (2.3) 

The weak form of (2.1) is to find (𝜆 , 𝑢) ∈ 𝐶 × 𝐻Γ𝐷

1 (Ω), 𝑢 ≠ 0, such that the following equation holds. 

𝑎(𝑢 , 𝑣) = 𝜆(𝑢 , 𝑣),    ∀𝑢, 𝑣 ∈ 𝐻Γ𝐷

1 (Ω).                                                      (2.4) 

Let 𝒯ℎ = {𝜅} be a shape-regular mesh of 𝛺, where an internal edge of 𝒯ℎ is the non-empty interior of ∂𝜅+ ∩
∂𝜅−, with 𝜅+ and 𝜅− being two adjacent elements of 𝒯ℎ, not necessarily matching. An external edge of 𝒯ℎ is the 

non-empty interior of ∂𝜅 ∩ ∂Ω. Let ℰ = ℰℐ  ∪ ℰ𝒟 ∪ ℰ𝒩,where ℰℐ denotes the set of interior edges, ℰ𝒟 denotes an 

edge on the boundary Γ𝐷, and ℰ𝒩 denotes an edge on the boundary Γ𝑁. 

ℎ𝜅 = 𝑑𝑖𝑎𝑚(𝜅), ∀𝜅 ∈ 𝒯ℎ;             ℎ𝑒 = 𝑑𝑖𝑎𝑚(𝑒), ∀𝑒 ∈ ℰ. 
Introduce the space of piecewise functions over the mesh 𝒯ℎ: 

𝐻𝑠(𝒯ℎ) = {𝑣 ∈ 𝐿2(Ω):   𝑣|𝜅 ∈ 𝐻𝑠(𝜅)  , ∀𝜅 ∈ 𝒯ℎ}. 
Define the average and the jump of 𝑣 on 𝑒: 

{{𝑣}} =
1

2
(𝑣+ + 𝑣−), [[𝑣]] = 𝑣+𝐧+ + 𝑣−𝐧−, 

where 𝑒 = ∂𝜅+ ∩ ∂𝜅−, 𝑣+ = 𝑣|𝜅+ , 𝑣− = 𝑣|𝜅−, n is the unit outward normal vector from 𝜅+ to 𝜅−. 

If 𝑒 ∈ ℰ𝒟⋃ℰ𝒩 , define the average and the jump of 𝑣 on 𝑒: 

{{𝑣}} = 𝑣, [[𝑣]] = 𝑣𝐧 

Define 

𝑎ℎ(𝑤ℎ , 𝑣ℎ) = ∑  

𝜅∈𝒯ℎ

∫ 
𝜅

(∇𝑤ℎ ⋅ ∇𝑣ℎ)𝑑𝑥 − ∑  

𝑒∈ℰℐ∪ℰ𝒟

∫ 
𝑒

{{∇𝑤ℎ}} ⋅ [[𝑣ℎ]]𝑑𝑠

− ∑  

𝑒∈ℰℐ∪ℰ𝒟

∫ 
𝑒

{{∇𝑣ℎ}} ⋅ [[𝑤ℎ]]𝑑𝑠 + 𝜂 ∑  

𝑒∈ℰℐ∪ℰ𝒟

ℎ𝑒
−1 ∫ 

𝑒

[[𝑤ℎ]][[𝑣ℎ]]𝑑𝑠

 

where 𝜂 is the penalty parameter. 

Define the space of DG finite elements: 

𝑉ℎ = {𝑣 ∈ 𝐿2(Ω):   𝑣|𝜅 ∈ ℙ𝑚(𝜅)  , ∀𝜅 ∈ 𝒯ℎ}. 
where ℙ𝑚(𝜅) is the m-th order polynomial space on 𝜅. 

The finite element approximation of (2.4) is to find (𝜆ℎ , 𝑢ℎ) ∈ 𝐶 × 𝑉ℎ, 𝑢ℎ ≠ 0, such that 

𝑎ℎ(𝑢ℎ , 𝑣ℎ) = 𝜆ℎ(𝑢ℎ , 𝑣ℎ),    ∀𝑣ℎ ∈ 𝑉ℎ .                                                      (2.5) 

The source problem for (2.4) is to find 𝑤 ∈ 𝐻Γ𝐷

1 (Ω), such that 

𝑎(𝑤, 𝑣) = (𝑓, 𝑣),      ∀𝑣 ∈ 𝐻Γ𝐷

1 (Ω).                                                      (2.6) 

The DG approximation of (2.6) is to find 𝑤ℎ ∈ 𝑉ℎ, such that 

𝑎ℎ(𝑤ℎ  , 𝑣ℎ) = (𝑓, 𝑣ℎ),      ∀𝑣ℎ ∈ 𝑉ℎ.                                                           (2.7) 

Define the linear bounded operator 𝑇: 𝐿2(Ω) → 𝐻Γ𝐷

1 (Ω) satisfying  

𝑇𝑓: = 𝑤,                                                                                     (2.8) 

The equivalent operator form of (2.4) is: 

𝑇𝑢 =
1

𝜆
𝑢.                                                                                    (2.9) 

𝑇ℎ: 𝐿2(Ω) → 𝑉ℎ can be defined as the corresponding discrete solution operator of (2.8), satisfying 
𝑇ℎ𝑓 ≔ 𝑤ℎ ,                                                                                (2.10) 

The equivalent operator form of (2.5) is: 

𝑇ℎ𝑢ℎ =
1

𝜆ℎ
𝑢ℎ.                                                                             (2.11) 

Introduce the summation space 𝑉(ℎ) = 𝑉ℎ + 𝐻Γ𝐷

1 (Ω) endowed with the DG norm, where the DG norm is defined 

as: 

∥𝑣∥𝐺
2 = ∑  

𝜅∈𝒯ℎ

∥∥∇𝑣ℎ∥∥0,𝑘
2 + 𝜂 ∑  

𝑒∈ℰℐ∪ℰ𝒟

ℎ𝑒
−1 ∫ 

𝑒

|[[𝑣]]|2𝑑𝑠. 

And define the norm on the piecewise function space 𝐻𝑠(𝜏ℎ)(𝑠 >
3

2
) as 

∥𝑣∥ℎ
2 = ∑  𝜅∈𝒯ℎ

∥∇𝑣∥0,𝑘
2 + 𝜂 ∑  𝑒∈ℰℐ∪ℰ𝒟

ℎ𝑒
−1 ∫  

𝑒
|[[𝑣]]|2𝑑𝑠 + ∑  𝑒∈ℰℐ∪ℰ𝒟

ℎ𝑒

𝜂
∫  

𝑒
|{{∇𝑣}}|2𝑑𝑠             (2.12) 

Note that on the discontinuous finite element space 𝑉ℎ, ∥ ⋅ ∥ℎ and ∥ ⋅ ∥𝐺 are equivalent. 

By Proposition 3.3 in reference [7] and the Green's formula, we can derive the consistency of the discontinuous 

finite element method. Furthermore, by considering equation (2.7), we obtain: 

𝑎ℎ(𝑤 − 𝑤ℎ  , 𝑣ℎ) = 0,      ∀𝑣ℎ ∈ 𝑉ℎ .                                                      (2.13) 

Proof.     Let 𝑤 ∈ 𝐻Γ𝐷

1 (Ω) and 𝑣ℎ ∈ 𝑉ℎ be given. We can break 𝑎ℎ(𝑤ℎ , 𝑣ℎ) into four terms as follows: 
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𝑎ℎ(𝑤, 𝑣ℎ) = ∑  

𝜅∈𝒯ℎ

∫ 
𝜅

(∇𝑤 ⋅ ∇𝑣ℎ)𝑑𝑥 − ∑  

𝑒∈ℰℐ∪ℰ𝒟

∫ 
𝑒

{{∇𝑤}} ⋅ [[𝑣ℎ]]𝑑𝑠

− ∑  

𝑒∈ℰℐ∪ℰ𝒟

∫ 
𝑒

{{∇𝑣ℎ}} ⋅ [[𝑤]]𝑑𝑠 + 𝜂 ∑  

𝑒∈ℰℐ∪ℰ𝒟

ℎ𝑒
−1 ∫ 

𝑒

[[𝑤]][[𝑣ℎ]]𝑑𝑠

 

 =: 𝑇1 − 𝑇2 − 𝑇3 + 𝑇4                                                                                          (2.14) 

According to [[𝑤]]|𝑒 = 0, we can deduce 𝑇3 = 𝑇4 = 0. 

By applying the Green's formula to 𝑇1, we have: 

𝑇1 = ∑  𝜅∈𝒯ℎ
(∫  

𝜅
− Δ𝑤𝑣ℎ𝑑𝑥 + ∫  

∂𝜅
∇𝑤 ⋅ n𝜅𝑣ℎ𝑑𝑠)                                    (2.15) 

According to 

∑  𝜅∈𝒯ℎ
∫  

𝜅
− Δ𝑤𝑣ℎ𝑑𝑥 = ∫  

Ω
𝑓𝑣ℎ𝑑𝑥                                                             (2.16) 

∑  𝜅∈𝒯ℎ
∫  

∂𝜅
∇𝑤 ⋅ n𝜅𝑣ℎ𝑑𝑠 = ∑  𝑒∈ℰℐ∪ℰ𝒟 ∫  

𝑒
{{∇𝑤}} ⋅ [[𝑣ℎ]]𝑑𝑠 = 𝑇2                    (2.17) 

we can deduce 𝑇1 = 𝑇2 + 𝑇3 + 𝑇4 + ∫  
Ω

𝑓𝑣ℎ𝑑𝑥, 

then 

𝑎ℎ(𝑤, 𝑣ℎ) = ∫  
Ω

𝑓𝑣ℎ𝑑𝑥,      ∀𝑣ℎ ∈ 𝑉ℎ  ,                                                   (2.18) 

From the above equation and (2.7), we can obtain (2.13). 

It is not difficult to see that the following continuity and ellipticity hold: 
|𝑎ℎ(𝑢ℎ, 𝑣ℎ)| ≲ ∥∥𝑢ℎ∥∥ℎ∥∥𝑣ℎ∥∥ℎ

,      ∀𝑢ℎ, 𝑣ℎ ∈ 𝑉(ℎ) ,                                     (2.19) 

∥∥𝑢ℎ∥∥ℎ
2 ≲ 𝑎ℎ(𝑢ℎ, 𝑢ℎ),      ∀𝑢ℎ ∈ 𝑉ℎ  .                                                 (2.20) 

According to equation (2.8)  𝑤 = 𝑇𝑓 , and assuming 𝑓 ∈ 𝐿2(Ω) and 𝑤 ∈ 𝐻1+𝑟(Ω), we can assume the following 

regularity estimate holds: 

∥𝑤∥1+𝑟 ≲ ∥∥𝑓∥∥0,Ω
(

1

2
< 𝑟 ⩽ 1) . 

 

Lemma 2.1.[8] Let 𝜅 ∈ 𝒯ℎ and 𝑣 ∈ 𝐻𝑠𝜅(𝜅), 𝑠𝜅 >
3

2
. Then there exists the polynomial Πℎ𝜅

𝑣 ∈ ℙ𝑚(𝜅), satisfying 

∥ 𝑣 − Πℎ𝑣 ∥𝑞,𝜅≲ ℎ𝜅
min(𝑚+1,𝑠𝜅)−𝑞

∥𝑣∥𝑠𝜅,𝜅 ,                                           (2.21) 

∥ 𝑣 − Πℎ𝑣 ∥0,𝑒≲ ℎ𝜅

min(𝑚+1,𝑠𝜅)−
1

2∥𝑣∥𝑠𝜅,𝜅 .                                           (2.22) 

Now we introduce the global interpolation operator Πℎ: 𝐻Γ𝐷(Ω)
1 → 𝑉ℎ , such thatΠℎ(𝑢)|𝜅 = Πℎ(𝑢|𝜅)，for the 

vector-value function 𝒓 = (𝒓1, 𝒓2),define Πℎ(𝒓)|𝜅 = (Πℎ𝒓1, Πℎ𝒓2). 

 

Theorem 2.1.   Let  𝑤 and 𝑤ℎ be the solutions to (2.6) and (2.7), respectively. Assuming that 𝑤 satisfies 𝑤|𝜅 ∈

𝐻𝑠𝜅(𝜅), the following inequalities hold for all 𝜅 ∈ 𝒯ℎ and 𝑠𝜅 >
3

2
 

∥∥𝑤 − 𝑤ℎ∥∥ℎ
≲ 𝑖𝑛𝑓

𝑣ℎ∈𝑉ℎ

∥∥𝑤 − 𝑣ℎ∥∥ℎ
 ,                                                        (2.23) 

∥∥𝑤 − 𝑤ℎ∥∥ℎ
≲ (∑  𝜅∈𝒯ℎ

(ℎ𝜅
min(𝑚+1,𝑠𝜅)−1

∥𝑤∥𝑠𝜅,𝜅)2)
1

2 .                          (2.24) 

 

Proof.    Firstly, we prove (2.23) by utilizing (2.13), (2.19), and (2.20), we can obtain 

∥∥𝑤 − 𝑤ℎ∥∥ℎ
2 ≲ 𝑎ℎ(𝑤 − 𝑤ℎ , 𝑤 − 𝑤ℎ)

                                                                   ≲ 𝑎ℎ(𝑤 − 𝑤ℎ , 𝑤 − 𝑣ℎ) + 𝑎ℎ(𝑤 − 𝑤ℎ , 𝑣ℎ − 𝑤ℎ)

                         ≲ ∥∥𝑤 − 𝑤ℎ∥∥ℎ∥∥𝑤 − 𝑣ℎ∥∥ℎ 
,

 

According to the triangle inequality and the above equation, we can obtain 
∥∥𝑤 − 𝑤ℎ∥∥ℎ

≲ ∥∥𝑤 − 𝑣ℎ∥∥ℎ
+ ∥∥𝑣ℎ − 𝑤ℎ∥∥ℎ

≲ ∥∥𝑤 − 𝑣ℎ∥∥ℎ
+ ∥∥𝑣ℎ − 𝑤∥∥ℎ

. 
Therefore, equation (2.23) is proven. 

Next, we prove (2.24). From (2.12), setting 𝐸ℎ(𝑤) = 𝑤 − Πℎ𝑤, we have: 

∥∥𝐸ℎ(𝑤)∥∥ℎ
2 = ∑  

𝜅∈𝒯ℎ

∥∥∇ℎ𝐸ℎ(𝑤)∥∥0,𝑘
2 + 𝜂 ∑  

𝑒∈ℰ𝐼∪ℰ𝒟

ℎ𝑒
−1 ∫ 

𝑒

|[[𝐸ℎ(𝑤)]]|2𝑑𝑠 + ∑  

𝑒∈ℰ𝐼∪ℰ𝒟

ℎ𝑒

𝜂
∫ 

𝑒

|{{∇ℎ𝐸ℎ(𝑤)}}|2𝑑𝑠

             ≲ ∑  

𝜅∈𝒯ℎ

(∥∥∇ℎ𝐸ℎ(𝑤)∥∥0,𝜅
2 + 𝜂 ∑  

𝑒∈ℰ𝐼∪ℰ𝒟

ℎ𝑒
−1(∥∥[[𝐸ℎ(𝑤)]]∥∥

0,𝑒

2
+ ∑  

𝑒∈ℰ𝐼∪ℰ𝒟

ℎ𝑒

𝜂
(∥∥{{∇ℎ𝐸ℎ(𝑤)}}∥∥

0,𝑒

2
 

  : = 𝐼1 + 𝐼2 + 𝐼3                                                                                                                           (2.25) 

An estimation for 𝐼1 can be obtained using (2.21) 

∑  𝜅∈𝒯ℎ
∥∥∇ℎ𝐸ℎ(𝑤)∥∥0,𝜅

2
≲ ∑  𝜅∈𝒯ℎ

∥∥𝐸ℎ(𝑤)∥∥1,𝜅

2

≲ ∑  𝜅∈𝒯ℎ
(ℎ𝜅

min(𝑚+1,𝑠𝜅)−1
∥𝑤∥𝑠𝜅,𝜅)2

                                          (2.26) 
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An estimation for 𝐼2 can be obtained using (2.22) 

𝜂 ∑  𝑒∈ℰℐ∪ℰ𝒟
ℎ𝑒

−1∥∥[[𝐸ℎ(𝑤)]]∥∥
0,𝑒

2
≲ ∑  𝜅∈𝒯ℎ

(∑  𝑒∈∂𝜅 𝜂ℎ𝑒
−1∥∥𝐸ℎ(𝑤)∥∥0,𝑒

2 )

≲ ∑  𝜅∈𝒯ℎ
𝜂ℎ𝜅

−1(ℎ𝜅

min (𝑚+1,𝑠𝜅)−
1

2∥𝑤∥𝑠𝜅,𝜅)2

≲ ∑  𝜅∈𝒯ℎ
(ℎ𝜅

min (𝑚+1,𝑠𝜅)−1
∥𝑤∥𝑠𝜅,𝜅)2

                               (2.27) 

Estimation for 𝐼3 can be obtained, using (2.22), where 𝑒 = 𝜅+⋂𝜅−, 𝜅+ = 𝜅− 

∑  𝑒∈ℰℐ∪ℰ𝒟

ℎ𝑒

𝜂
∥∥{{∇ℎ𝐸ℎ(𝑤)}}∥∥

0,𝑒

2
≲

1

𝜂
(ℎ𝜅(∥∥∇ℎ𝐸ℎ(𝑤)𝜅+∥∥0,ℰℐ

2 + ∥∥∇ℎ𝐸ℎ(𝑤)𝜅−∥∥0,ℰℐ

2 )

+ℎ𝜅∥∥∇ℎ𝐸ℎ(𝑤)∥∥
0,ℰ𝒟

2 )

≲ ∑  𝜅∈𝒯ℎ
ℎ𝜅

1

𝜂
(ℎ𝜅

−1∥∥∇ℎ𝐸ℎ(𝑤)∥∥0,𝜅
2 + ℎ𝜅

2𝑟−1|∇ℎ𝐸ℎ(𝑤)|𝑟,𝜅
2 )

≲ ∑  𝜅∈𝒯ℎ
((ℎ𝜅

min (𝑚+1,𝑠𝜅)−1
∥𝑤∥𝑠𝜅,𝜅)2 + ℎ𝜅

2𝑟(ℎ𝜅
min (𝑚+1,𝑠𝜅)−1−𝑟

∥𝑤∥𝑠𝜅,𝜅)2)

≲ ∑  𝜅∈𝒯ℎ
(ℎ𝜅

min (𝑚+1,𝑠𝜅)−1
∥𝑤∥𝑠𝜅,𝜅)2

    (2.28) 

From (2.26), (2.27) and (2.28), we can obtain 

∥ 𝑤 − Πℎ𝑤 ∥ℎ≲  ( ∑  

𝜅∈𝒯ℎ

(ℎ𝜅
min(𝑚+1,𝑠𝜅)−1

∥𝑤∥𝑠𝜅,𝜅)2)
1

2
 

According to the error estimation formula and the interpolation error formula, we have: 
𝑖𝑛𝑓

𝑣ℎ∈𝑉ℎ

∥∥𝑤 − 𝑣ℎ∥∥ℎ
≲∥ 𝑤 − Πℎ𝑤 ∥ℎ                                                          (2.29) 

From (2.23), (2.29) and the above equation, we can derive (2.24), the proof is completed. 

 

Theorem 2.2. Let 𝑤 and 𝑤ℎ be the solutions to (2.6) and (2.7), respectively. Assuming that 𝑤 satisfies 𝑤|𝜅 ∈
𝐻𝑠(𝜅), the following inequalities hold for all 𝜅 ∈ 𝒯ℎ and 𝑠 ⩾ 1 + 𝑟 

∥∥𝑤 − 𝑤ℎ∥∥0,Ω
≲ ℎ𝑟∥∥𝑤 − 𝑤ℎ∥∥ℎ

 ,                                                             (2.30) 

∥ 𝑤 − 𝑤ℎ ∥0,Ω≲ ℎmin(𝑚+1,𝑠)+𝑟−1 ∥ 𝑤 ∥𝑠,Ω .                                           (2.31) 

where ℎ = 𝑚𝑎𝑥
𝜅∈𝒯ℎ

 ℎ𝜅 . 

Proof.   Firstly, to prove equation (2.30), considering the primal problem of the dual problem (2.4) denoted as 

𝑎(𝑣, 𝑤′) = (𝑣, 𝑔) , ∀𝑣 ∈ 𝐻Γ𝐷

1 (Ω) , for any fixed 𝑔 ∈ 𝐿2(Ω) ,where 𝑤′ ∈ 𝐻1+𝑟(Ω) , a regularity estimate 

∥𝑤′∥1+𝑟,Ω ≲ ∥∥𝑔∥∥
0,Ω

  holds. Let 𝑤ℎ
′ = Πℎ𝑤′,By utilizing (2.13), we can derive  

(𝑤 − 𝑤ℎ , 𝑔) = 𝑎ℎ(𝑤 − 𝑤ℎ , 𝑤′) = 𝑎ℎ(𝑤 − 𝑤ℎ , 𝑤′ − Πℎ𝑤′)

≲ ∥∥𝑤 − 𝑤ℎ∥∥ℎ∥∥𝑤′ − Πℎ𝑤′∥∥ℎ
.

                            (2.32) 

From (2.24) and the elliptic regularity estimate, we can obtain 
∥∥𝑤′ − Πℎ𝑤′∥∥ℎ

≲ ℎ𝑟∥𝑤′∥1+𝑟,Ω ≲ ℎ𝑟∥∥𝑔∥∥
0,Ω

.                                             (2.33) 

From (2.32) and (2.33), we can obtain 

∥ 𝑤 − 𝑤ℎ ∥0,Ω= 𝑠𝑢𝑝
𝑔∈𝐿2(Ω)

 
|(𝑤 − 𝑤ℎ , 𝑔)|

∥ 𝑔 ∥0,Ω

≲ ℎ𝑟∥∥𝑤 − 𝑤ℎ∥∥ℎ 

that is (2.30). 

Next, we will prove (2.31). From (2.24) and (2.30) we have 

∥ 𝑤 − 𝑤ℎ ∥0,Ω≲ ℎ𝑟∥∥𝑤 − 𝑤ℎ∥∥ℎ
= ℎmin (𝑚+1,𝑠)+𝑟−1∥𝑤∥𝑠,Ω . 

that is (2.31), the proof is completed. 

 

From (2.24) and regularity estimate, we derive the stability estimation: 
∥∥𝑇ℎ𝑓∥∥ℎ

≲ ∥∥𝑓∥∥0,Ω 

 

III. A PRIORI ERROR ESTIMATES FOR THE EIGENVALUE PROBLEM  

Assume λ is the jth eigenvalue of (2.4) with the algebraic multiplicity q and the ascent 𝛼 = 1, 

𝜆𝑗 = 𝜆𝑗+1 = ⋯ = 𝜆𝑗+𝑞−1. When ∥∥𝑇ℎ − 𝑇∥∥0,Ω
→ 0, q eigenvalues 𝜆𝑗,ℎ, ⋯ , 𝜆𝑗+𝑞−1,ℎof (2.6) will converge to 𝜆. Let 

𝑀(𝜆)be the space of generalized eigenvectors of (2.4) associated with 𝜆, and 𝑀ℎ(𝜆) be the direct sum of the 

generalized eigenspace of (2.8) associated with 𝜆ℎ that converge to 𝜆. 

Given two closed subspaces 𝑉 and 𝑈, denote 

𝛿(𝑈, 𝑉) = 𝑠𝑢𝑝
𝑢∈𝑉,∥𝑢∥0,Ω=1

 𝑖𝑛𝑓
𝑣∈𝑈

  ∥ 𝑢 − 𝑣 ∥0,Ω, �̂�(𝑈, 𝑉) = 𝑚𝑎𝑥{𝛿(𝑈, 𝑉), 𝛿(𝑉, 𝑈)}. 

And denote the arithmetic mean �̂�ℎ =
1

𝑞
∑  

𝑗+𝑞−1
𝑖=𝑗 𝜆𝑖,ℎ. 
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Theorem 3.1.   Assume 𝑀(𝜆) ⊂ 𝐻𝑠(Ω)(𝑠 ≥ 1 + 𝑟), 𝑡 = 𝑚𝑖𝑛{𝑚 + 1, 𝑠} − 1, then 

|𝜆ℎ − 𝜆| ≲ ℎ2𝑡  ,                                                                     (3.1) 

Suppose 𝑢ℎ ∈ 𝑀ℎ(𝜆)  is a direct sum of generalized eigenvector spaces for (2.5). Then there exists an 

eigenfunction 𝑢 for the eigenvalue problem (2.4) such that 

∥∥𝑢 − 𝑢ℎ∥∥0,Ω
≲ ℎ𝑡+𝑟 ,                                                                   (3.2) 

∥∥𝑢 − 𝑢ℎ∥∥ℎ
≲ ℎ𝑡  .                                                                      (3.3) 

Note that 𝑇𝑓 = 𝑤 and 𝑇ℎ𝑓 = 𝑤ℎ. With the operator form, regularity estimate, and (2.31), we can obtain 

∥ 𝑇 − 𝑇ℎ ∥0,Ω= 𝑠𝑢𝑝
0≠𝑓∈𝐿2(Ω)

 
∥ 𝑇𝑓 − 𝑇ℎ𝑓 ∥0,Ω

∥ 𝑓 ∥0,Ω

≲ sup
0≠𝑓∈𝐿2(Ω)

 
ℎ𝑡+𝑟 ∥ 𝑓 ∥0,Ω

∥ 𝑓 ∥0,Ω

≲ ℎ𝑡+𝑟 → 0 , (ℎ → 0).

 

From Theorem 7.1, Theorem 7.2, Theorem 7.3 and Theorem 7.4 in [9], we have 

�̂�(𝑀(𝜆), 𝑀ℎ(𝜆)) ≲∥ (𝑇 − 𝑇ℎ)|𝑀(𝜆) ∥0,Ω  ,                                     (3.4) 

|𝜆 − �̂�ℎ| ≲ ∑  
𝑗+𝑞−1
𝑖,𝑙=𝑗 |((𝑇 − 𝑇ℎ)𝜑𝑖 , 𝜑𝑙)|+∥ (𝑇 − 𝑇ℎ)|𝑀(𝜆) ∥0,Ω

2   ,                                     (3.5) 

|𝜆 − 𝜆ℎ| ≲ ∑  
𝑗+𝑞−1
𝑖,𝑙=𝑗 |((𝑇 − 𝑇ℎ)𝜑𝑖 , 𝜑𝑙)| + ∥∥(𝑇 − 𝑇ℎ)|𝑀(𝜆)∥∥

0,Ω

2
  ,                                     (3.6) 

∥∥𝑢 − 𝑢ℎ∥∥0,Ω
≲∥ (𝑇 − 𝑇ℎ)|𝑀(𝜆) ∥0,Ω  .                                     (3.7) 

where {𝜑𝑖}𝑖=𝑗
𝑗+𝑞−1

 is basis for 𝑀(𝜆) . 

From Theorem 2.1 and Theorem 2.2, we derive 
∥ (𝑇 − 𝑇ℎ)|𝑀(𝜆) ∥0,Ω= 𝑠𝑢𝑝

𝑓∈𝑀(𝜆),||𝑓||0,Ω=1
  ∥ 𝑇𝑓 − 𝑇ℎ𝑓 ∥0,Ω

≲ 𝑠𝑢𝑝
𝑓∈𝑀(𝜆),||𝑓||0,Ω=1

 ℎ𝑡+𝑟 ∥ 𝑇𝑓 ∥𝑡+1,Ω
                                             (3.8) 

Substituting (3.8) into (3.7), we can obtain (3.2). 

By utilizing the properties of the operator and regularity estimates, from (2.13), we can obtain that 
((𝑇 − 𝑇ℎ)𝜑𝑖 , 𝜑𝑙) = 𝑎ℎ(𝑇𝜑𝑖 − 𝑇ℎ𝜑𝑖 , 𝑇𝜑𝑙)

= 𝑎ℎ(𝑇𝜑𝑖 − 𝑇ℎ𝜑𝑖 , 𝑇𝜑𝑙 − 𝑇ℎ𝜑𝑙)
≲∥ 𝑇𝜑𝑖 − 𝑇ℎ𝜑𝑖 ∥ℎ∥ 𝑇𝜑𝑙 − 𝑇ℎ𝜑𝑙 ∥ℎ

≲ ℎ𝑡 ∥ 𝑇𝜑𝑖 ∥𝑡+1 ℎ𝑡 ∥ 𝑇𝜑𝑙 ∥𝑡+1

≲ ℎ2𝑡

                                          (3.9) 

Substituting (3.8), (3.9) into (3.6), we get (3.1). 

From 𝑢 = 𝜆𝑇𝑢 and 𝑢ℎ = 𝜆ℎ𝑇ℎ𝑢ℎ,using the triangle inequality, (2.31), (3.1) and (3.2), we derive  

|∥∥𝑢 − 𝑢ℎ∥∥ℎ
− ∥∥𝑢 − 𝜆𝑇ℎ𝑢∥∥ℎ

|≲ ∥∥𝑢ℎ − 𝜆𝑇ℎ𝑢∥∥ℎ
= ∥∥𝑇ℎ(𝜆ℎ𝑢ℎ − 𝜆𝑢)∥∥ℎ

≲ ∥∥𝜆ℎ𝑢ℎ − 𝜆𝑢∥∥0,Ω
≲ ℎ𝑡+𝑟 

(3.10) 

From (2.9) and (2.11), we get 

∥∥𝑢 − 𝜆𝑇ℎ𝑢∥∥ℎ
= ∥∥𝜆𝑇𝑢 − 𝜆𝑇ℎ𝑢∥∥ℎ

⩽ 𝜆∥∥𝑇𝑢 − 𝑇ℎ𝑢∥∥ℎ
≲ 𝑖𝑛𝑓

𝑣ℎ∈𝑉ℎ

 ∥∥𝑇𝑢 − 𝑣ℎ∥∥ℎ
≲ ∥∥𝑢 − 𝑢ℎ∥∥ℎ

≲ ℎ𝑡
 

(3.11) 

From (3.10) and (3.11), we can obtain (3.3). 

The proof is completed. 

 

IV. TWO-GRID DISCRETIZATION  

In this section, we present a two-grid discretization scheme based on the shifted inverse iteration. We 

propose Scheme 4.1 and conduct a rigorous theoretical analysis. Denote 𝑉𝐻 ⊂ 𝑉ℎ , ℎ < 𝐻 . 

 

Scheme 4.1(Two-grid discretization based on shifted inverse iteration) 

Step 1: Solve on the coarse grid 𝜋𝐻 (2.5): Find 𝜆𝐻 , 𝑢𝐻) ∈ 𝑅 × 𝑉𝐻, such that  ∥∥𝑢𝐻∥∥
𝐻

= 1 and  

𝑎𝐻(𝑢𝐻 , 𝑣) = 𝜆𝐻(𝑢𝐻 , 𝑣), ∀𝑣 ∈ 𝑉𝐻 

Step 2: Solve a linear system on the 𝜋ℎ: Find 𝑢 ∈ 𝑉ℎ, such that 

𝑎ℎ(𝑢, 𝑣) − 𝜆𝐻(𝑢, 𝑣) = (𝑢𝐻 , 𝑣), ∀𝑣 ∈ 𝑉ℎ. 

Set 𝑢𝑗
ℎ =

𝑢

∥𝑢∥ℎ
 . 

Step 3: Compute the Rayleigh quotient 

𝜆𝑗
ℎ =

𝑎ℎ(𝑢𝑗
ℎ, 𝑢𝑗

ℎ)

(𝑢𝑗
ℎ, 𝑢𝑗

ℎ)
. 

Next, we will perform an error analysis for scheme 4.1. 

We first present the following lemma to prepare for the error analysis. 
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Lemma 4.1.   Let (𝜆, 𝑢) be an eigenpair of (2.4), then for any  𝑣 ∈ 𝑉ℎ  and  √(𝑣, 𝑣) ≠ 0 , the Rayleigh quotient 

𝑅(𝑣) =
𝑎ℎ(𝑣,𝑣)

(𝑣,𝑣)
 satisfies 

𝑅(𝑣) − 𝜆 =
𝑎ℎ(𝑣−𝑢,𝑣−𝑢)

(𝑣,𝑣)
− 𝜆

(𝑣−𝑢,𝑣−𝑢)

(𝑣,𝑣)
.                                                (4.1) 

Proof.     From (2.13) we have 

𝑎ℎ(𝑢, 𝑣) = (𝜆𝑢, 𝑣) = (𝜆ℎ𝑢, 𝑣),     ∀𝑣 ∈ 𝑉ℎ , 

thus, 
𝑎ℎ(𝑣 − 𝑢, 𝑣 − 𝑢) − 𝜆(𝑣 − 𝑢, 𝑣 − 𝑢)

= 𝑎ℎ(𝑣, 𝑣) − 2𝑎ℎ(𝑢, 𝑣) + 𝑎ℎ(𝑢, 𝑢) − 𝜆(𝑣, 𝑣) + 2𝜆(𝑢, 𝑣) − 𝜆(𝑢, 𝑢)
= 𝑎ℎ(𝑣, 𝑣) − 2(𝜆𝑢, 𝑣) + 𝑎(𝑢, 𝑢) − 𝜆(𝑣, 𝑣) + 2𝜆(𝑢, 𝑣) − 𝜆(𝑢, 𝑢)

= 𝑎ℎ(𝑣, 𝑣) − 𝜆(𝑣, 𝑣)

 

dividing both sides by (𝑣, 𝑣) we get (4.1) 

 

Lemma 4.2.   For any non-zero elements 𝑢, 𝑣 in any normed linear space (𝑉, ∥⋅∥), it holds that: 

∥∥
∥ 𝑢

∥𝑢∥
−

𝑣

∥𝑣∥∥∥
∥ ≤ 2

∥𝑢 − 𝑣∥

∥𝑢∥
, ∥∥

∥ 𝑢

∥𝑢∥
−

𝑣

∥𝑣∥∥∥
∥ ≤ 2

∥𝑢 − 𝑣∥

∥𝑣∥
 . 

Proof See Lemma 3.1 in [10] 

 

Lemma 4.3. [6]  Let (𝜇0, 𝑢0) be the jth approximate eigenpair of (2.4), where 𝜇0 is not an eigenvalue of  𝑇ℎ  , 
 𝑢0 ∈ 𝑉ℎ , ∥∥𝑢0∥∥ℎ

= 1 , such that 

(C1)𝑑𝑖𝑠𝑡(𝑢0, 𝑀ℎ(𝜇𝑗)) ≤
1

2
 

(C2) |𝜇0 − 𝜇𝑗| ≤
𝜗

4
 , |𝜇𝑘,ℎ − 𝜇𝑘| ≤

𝜗

4
 ,  𝑘 = 𝑗 − 1 , 𝑗 , 𝑗 + 𝑞(𝑘 ≠ 0) , where 𝜗 = 𝑚𝑖𝑛

𝜇𝑘≠𝜇𝑗

 |𝜇𝑘 − 𝜇𝑗| is the separate 

constant of the eigenvalue  𝜇𝑗 ; 

(C3) 𝑢 ∈ 𝑉ℎ  and  𝑢𝑗
ℎ ∈ 𝑉ℎ  satisfy 

(𝜇0 − 𝑇ℎ)𝑢 = 𝑢0 ,    𝑢𝑗
ℎ =

𝑢

∥𝑢∥ℎ
 ,                                                         (4.2) 

then 

𝑑𝑖𝑠𝑡(𝑢𝑗
ℎ, 𝑀ℎ(𝜇𝑗)) ≤

4

𝜗
𝑚𝑎𝑥

𝑗≤𝑘≤𝑗+𝑞−1
 |𝜇0 − 𝜇𝑘,ℎ|𝑑𝑖𝑠𝑡(𝑢0, 𝑀ℎ(𝜇𝑗)) . 

Now we can use Theorem 3.1 and the above lemma to analyze the error of the two-grid discretization Scheme 

4.1. 

 

Theorem 4.1.  Suppose that 𝑀(𝜆𝑗) ⊂ 𝐻𝑠(Ω)  (𝑠 >
3

2
) , and 𝑡 = 𝑚𝑖𝑛{𝑚 + 1, 𝑠} − 1 . Let (𝜆𝑗

ℎ , 𝑢𝑗
ℎ)  be an 

approximate eigenpair obtained by Scheme 4.1 and 𝐻 is sufficiently small, then there exists  𝑢𝑗 ∈ 𝑀(𝜆𝑗)   such 

that 

∥∥𝑢𝑗
ℎ − 𝑢𝑗∥∥

ℎ
≤ 𝐶(𝐻3𝑡+𝑟 + ℎ𝑡)                                                               (4.3) 

∥∥𝑢𝑗
ℎ − 𝑢𝑗∥∥

0,Ω
≤ 𝐶(𝐻3𝑡+𝑟 + ℎ𝑡+𝑟)                                                           (4.4) 

|𝜆𝑗
ℎ − 𝜆𝑗| ≤ 𝐶(𝐻3𝑡+𝑟 + ℎ𝑡)2                                                             (4.5) 

Proof.   We will use Lemma 4.3 to complete the proof. Take  𝜇0 =
1

𝜆𝐻
,  𝑢0 =

𝜆𝐻𝑇ℎ𝑢𝐻

∥∥𝜆𝐻𝑇ℎ𝑢𝐻∥∥ℎ

 .From (3.3) we know that 

there exists  𝑢
¯

∈ 𝑀(𝜆𝑗) , such that 𝜆𝐻𝑇ℎ𝑢𝐻 − 𝑢
¯
 satisfy (3.2) and (3.3). From (2.10), Schwarz’s inequality and 

(3.2), we get 

𝑎ℎ(𝑇ℎ(𝑢𝐻 − 𝑢
¯
), 𝑇ℎ(𝑢𝐻 − 𝑢

¯
)) = (𝑢𝐻 − 𝑢

¯
, 𝑇ℎ(𝑢𝐻 − 𝑢

¯
))

≤ ∥∥
∥𝑢𝐻 − 𝑢

¯

∥∥
∥

0,Ω ∥∥
∥𝑇ℎ(𝑢𝐻 − 𝑢

¯
)∥∥
∥

0,Ω

≤ 𝐶(𝐻𝑡+𝑟)2

 

then, 

∥∥
∥𝑇ℎ(𝑢𝐻 − 𝑢

¯
)∥∥
∥

ℎ
≤ 𝐶𝐻𝑡+𝑟                                                                 (4.6) 

From (4.10), (3.1) and (3.3), we get 

∥∥
∥𝜆𝐻𝑇ℎ𝑢𝐻 − 𝑢

¯

∥∥
∥

ℎ
= ∥∥

∥𝜆𝐻(𝑇ℎ𝑢𝐻 − 𝑇ℎ𝑢
¯
) + 𝜆𝐻(𝑇ℎ𝑢

¯
− 𝑇𝑢

¯
) + (𝜆𝐻 − 𝜆)𝑇𝑢

¯

∥∥
∥

ℎ

≤ 𝐶(∥∥
∥𝑇ℎ(𝑢𝐻 − 𝑢

¯
)∥∥
∥

ℎ
+ ∥

∥(𝑇 − 𝑇ℎ)|𝑀(𝜆𝑗)∥
∥

ℎ
+ |𝜆𝐻 − 𝜆|)

≤ 𝐶(𝐻𝑡+𝑟 + ℎ𝑡 + 𝐻2𝑡)

≤ 𝐶(𝐻𝑡+𝑟 + ℎ𝑡)
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Denote 𝑢′ =
𝑢
¯

∥∥
∥𝑢

¯

∥∥
∥

ℎ

, from Lemma 4.2 we can obtain 

∥∥𝑢0 − 𝑢′∥∥ℎ
=

∥
∥
∥
∥

𝑢0 −
𝑢
¯

∥∥
∥𝑢

¯

∥∥
∥

ℎ∥
∥
∥
∥

ℎ

≤ 𝐶 ∥∥
∥𝜆𝐻𝑇ℎ𝑢𝐻 − 𝑢

¯

∥∥
∥

ℎ
≤ 𝐶(𝐻𝑡+𝑟 + ℎ𝑡)                                   (4.7) 

From (3.3) we know that there exists 𝑢ℎ ∈ 𝑀ℎ(𝜆𝑗) , such that 

∥∥𝑢ℎ − 𝑢′∥∥ℎ
=

∥
∥
∥
∥

𝑢ℎ −
𝑢
¯

∥∥
∥𝑢

¯

∥∥
∥

ℎ∥
∥
∥
∥

ℎ

≤ 𝐶ℎ𝑡
                                                          (4.8) 

From the triangle inequality, (4.11) and (4.12) we get 

𝑑𝑖𝑠𝑡(𝑢0, 𝑀ℎ(𝜆𝑗)) ≤ ∥∥𝑢0 − 𝑢ℎ∥∥ℎ
≤ ∥∥𝑢0 − 𝑢′∥∥ℎ

+ ∥∥𝑢ℎ − 𝑢′∥∥ℎ
≤ 𝐶(𝐻𝑡+𝑟 + ℎ𝑡)                   (4.9) 

where 𝐻 is small enough, the condition (𝐶1) in Lemma 4.3 is valid. 

From (3.1) we get 

                                        

|𝜇0 − 𝜇𝑗| =
|𝜆𝐻 − 𝜆𝑗|

|𝜆𝐻𝜆𝑗|
≤ 𝐶𝐻2𝑡 ≤

𝜗

4
;

|𝜇𝑘 − 𝜇𝑘,ℎ| =
|𝜆𝑘,ℎ − 𝜆𝑘|

|𝜆𝑘,ℎ𝜆𝑘|
≤ 𝐶ℎ2𝑡 ≤

𝜗

4
, 𝑘 = 𝑗 − 1, 𝑗, . . . , 𝑗 + 𝑞, 𝑘 ≠ 0.

 

Then, the condition (𝐶2) in Lemma 4.3 is valid. 

According to the definition of 𝑇ℎ, Step 3 of Scheme 4.1 is equivalent to 

𝑎ℎ(𝑢, 𝑣) − 𝜆𝐻𝑎ℎ(𝑇ℎ𝑢, 𝑣) = 𝑎ℎ(𝑇ℎ𝑢𝐻 , 𝑣),         ∀𝑣 ∈ 𝑉ℎ  , 

and 𝑢𝑗
ℎ =

𝑢

∥𝑢∥ℎ
. 

(𝜆𝐻
−1 − 𝑇ℎ)𝑢 = 𝜆𝐻

−1𝑇ℎ𝑢𝐻 , 𝑢𝑗
ℎ =

𝑢

∥𝑢∥ℎ

. 

Note that 𝜆𝐻
−1𝑇ℎ𝑢𝐻 and 𝑢0 differ by only one constant, so Step 3 is equivalent to  

(𝜆𝐻
−1 − 𝑇ℎ)𝑢 = 𝑢0, 𝑢𝑗

ℎ =
𝑢

∥𝑢∥ℎ

. 

Therefore, all the conditions in Lemma 4.3 are valid. 

Since the dimension of  𝑀ℎ(𝜆𝑗) is 𝑞, there exists  𝑢∗ ∈ 𝑀ℎ(𝜆𝑗) such that  

∥∥𝑢𝑗
ℎ − 𝑢∗

∥∥
ℎ

= 𝑑𝑖𝑠𝑡(𝑢𝑗
ℎ, 𝑀ℎ(𝜆𝑗)). 

where 𝑘 = 𝑗, 𝑗 + 1, . . . , 𝑗 + 𝑞 − 1, according to (3.1), we have 

|𝜇0 − 𝜇𝑘,ℎ| = |
1

𝜆𝐻
−

1

𝜆𝑘,ℎ
| ≤ |

𝜆𝐻−𝜆𝑘,ℎ

𝜆𝐻𝜆𝑘,ℎ
|

                             ≤ 𝐶(|𝜆𝐻 − 𝜆𝑗| + |𝜆𝑗 − 𝜆𝑘,ℎ|)

                       ≤ 𝐶(𝐻2𝑡 + ℎ2𝑡) ≤ 𝐶𝐻2𝑡 .

                                                    (4.10) 

Therefore, from Lemma 4.3, (4.13) and (4.14) we get 

∥∥𝑢𝑗
ℎ − 𝑢∗

∥∥
ℎ

= 𝑑𝑖𝑠𝑡(𝑢𝑗
ℎ , 𝑀ℎ(𝜆𝑗))

                                                               ≤
𝐶

𝜗
𝑚𝑎𝑥

𝑗≤𝑘≤𝑗+𝑞−1
 |𝜇0 − 𝜇𝑘,ℎ|𝑑𝑖𝑠𝑡(𝑢0, 𝑀ℎ(𝜆𝑗))

                                                                ≤ 𝐶𝐻2𝑡(𝐻𝑡+𝑟 + ℎ𝑡) = 𝐶(𝐻3𝑡+𝑟 + ℎ𝑡𝐻2𝑡).

                                 (4.11) 

From (3.3) we know exists 𝑢𝑗 ∈ 𝑀(𝜆𝑗),such that ∥∥𝑢∗ − 𝑢𝑗∥∥
ℎ

= 𝑑𝑖𝑠𝑡(𝑢∗, 𝑀(𝜆𝑗)), and  

∥∥𝑢∗ − 𝑢𝑗∥∥
ℎ

≤ 𝐶ℎ𝑡
                                                                             (4.12) 

Therefore, from (4.15) and (4.16) we get 

∥∥𝑢𝑗
ℎ − 𝑢𝑗∥∥

ℎ
≤ ∥∥𝑢𝑗

ℎ − 𝑢∗
∥∥

ℎ
+ ∥∥𝑢∗ − 𝑢𝑗∥∥

ℎ
≤ 𝐶(𝐻3𝑡+𝑟 + ℎ𝑡) 

This (4.3) is proven. 

Next, we will prove (4.4), from (3.2) we have 

∥∥𝑢∗ − 𝑢𝑗∥∥
0,Ω

≤ 𝐶ℎ𝑡+𝑟
 

similarly， 

∥∥𝑢𝑗
ℎ − 𝑢𝑗∥∥

0,Ω
≤ ∥∥𝑢𝑗

ℎ − 𝑢∗
∥∥

0,Ω
+ ∥∥𝑢∗ − 𝑢𝑗∥∥

0,Ω
≤ 𝐶(𝐻3𝑡+𝑟 + ℎ𝑡+𝑟) 

Finally, we use Lemma 4.1 to derive (4.5), from Step 4 of Scheme 4.1, Lemma 4.1, (4.7) and (4.8) we derive that 
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                       |𝜆𝑗
ℎ − 𝜆𝑗| = |

𝑎ℎ(𝑢𝑗
ℎ − 𝑢𝑗 , 𝑢𝑗

ℎ − 𝑢𝑗)

∥∥𝑢𝑗
ℎ

∥∥
0,Ω

2 − 𝜆𝑗

(𝑢𝑗
ℎ − 𝑢𝑗 , 𝑢𝑗

ℎ − 𝑢𝑗)

∥∥𝑢𝑗
ℎ

∥∥
0,Ω

2 |

                                         ≤ 𝐶(∥∥𝑢𝑗
ℎ − 𝑢𝑗∥∥

ℎ

2
+ |𝜆𝑗|∥∥𝑢𝑗

ℎ − 𝑢𝑗∥∥
0,Ω

2
)

                                         ≤ 𝐶(𝐻3𝑡+𝑟 + ℎ𝑡)2

       

The proof is completed. 

 

V. NUMERICAL EXPERIMENTS  

In this section, we will report some numerical experiments to show the efficiency of our method. We 

consider problem (2.1), where the penalty parameter is set to 8. Our program was compiled under the iFEM[11] 

software package. We consider the following two test domains: a square region Ω𝑆 = (0,1)2 and an L-shaped 

domain  (0,1)2 ∖ (
1

2
, 1)2. The initial mesh is a uniformly triangulated mesh with edge length 1/2, and the mesh is 

uniformly refined by dividing each triangle into four congruent triangles. We directly use linear elements to obtain 

an approximate solution for the eigenvalues. Since the exact eigenvalues are unknown, we use higher-dimensional 

computations to obtain their eigenvalues as reference values. For example, we take reference eigenvalues 𝜆1 ≈ 

2.467401100, 𝜆2 ≈  12.337005, 𝜆3 ≈ 22.2066 in the square domain, and 𝜆1 ≈  1.26503, 𝜆2 ≈  10.4193, 𝜆3 ≈ 

24.1361 in the L-shaped domain. From the two figures below, the first figure shows the error curve obtained by 

solving the linear elements in a square region, while the second figure represents the error curve obtained by 

solving the linear elements in an L-shaped region. In the square region, the error curves of the eigenvalues are all 

parallel to a straight line with a slope of 2, whereas in the L-shaped region, the error curves of the first and second 

eigenvalues have slopes of 1.33 and 1.37 respectively, which are not parallel to the straight line with a slope of 2. 

Therefore, the first and second eigenvalues of the L-shaped region are singular, while the error curves of the 

remaining eigenvalues have slopes close to 2. Hence, except for the first and second eigenvalues of the L-shaped 

region, all other eigenvalues can achieve optimal convergence rates. In Tables 1 and 2, we list the solutions 

obtained directly using linear elements on fine meshes in the square domain and L-shaped domains, and the 

solutions obtained using the two-grid discretization method based on the shifted inverse iteration method in 

Section 4.1, along with the solution times required by these two methods. From the comparison of the data in the 

two tables, it is evident that our method in Section 4.1 is more efficient and the solutions obtained still maintain 

optimal accuracy. 
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Figure: The above two graphs describe the error curves obtained by solving on linear elements. The first graph 

shows the error curve on the test domain Ω𝑆, while the second graph shows the error curve on the test domain Ω𝐿 . 

The initial mesh has an edge length of 1/2. 

 

 

Table 1: The first three eigenvalues of (2.1) solved using linear elements on domain Ω𝑆 , based on scheme 4.1. 

 
𝑗 𝐻 ℎ 𝜆𝑗,𝐻 𝜆𝑗,ℎ 𝐶𝑃𝑈(𝑠) 𝜆𝑗

ℎ 𝐶𝑃𝑈(𝑠) 

1 √2/16 √2/128 2.4689387917 2.4674254560 1.35 2.4674254561 0.68 

1 √2/16 √2/256 2.4689387917 2.4674071945 6.89 2.4674071949 3.61 

1 √2/32 √2/512 2.4677886497 2.4674026245 49.57 2.4674026260 30.89 

2 √2/16 √2/128 12.3832323 12.3377415 1.19 12.3377415 0.68 

2 √2/16 √2/256 12.3832323 12.3371897 5.36 12.3371897 3.46 

2 √2/32 √2/512 12.3486973 12.3370516 47.18 12.3370516 32.74 

3 √2/16 √2/128 22.33084 22.20858 1.03 22.20858 0.64 

3 √2/16 √2/256 22.33084 22.20710 5.26 22.20710 3.65 

3 √2/32 √2/512 22.23798 22.20673 46.65 22.20673 30.78 

 

Table 1: The first three eigenvalues of (2.1) solved using linear elements on domain Ω𝐿  , based on scheme 4.1. 

 
𝑗 𝐻 ℎ 𝜆𝑗,𝐻 𝜆𝑗,ℎ 𝐶𝑃𝑈(𝑠) 𝜆𝑗

ℎ 𝐶𝑃𝑈(𝑠) 

1 √2/16 √2/128 1.267879655 1.265207079 0.74 1.265207079 0.49 

1 √2/16 √2/256 1.267879655 1.265099724 3.45 1.265099725 2.23 

1 √2/32 √2/512 1.266163395 1.265057232 21.81 1.265057233 13.23 

2 √2/16 √2/128 10.4564 10.4208 0.71 10.4208 0.43 

2 √2/16 √2/256 10.4564 10.4199 3.60 10.4199 2.23 

2 √2/32 √2/512 10.4313 10.4195 21.61 10.4195 13.69 

3 √2/16 √2/128 24.3042 24.1397 0.70 24.1397 0.48 

3 √2/16 √2/256 24.3042 24.1372 3.51 24.1372 2.27 

3 √2/32 √2/512 24.1816 24.1365 23.02 24.1365 14.14 

 

VI. CONCLUSIONS  

This paper presents a study on the two-grid discretization of eigenvalue problems with homogeneous 

mixed boundary conditions using the discontinuous Galerkin method. Based on our approach, we solve the 

eigenvalue problem on the fine grid πℎ using linear elements and also provide solutions using Scheme 4.1. 

Numerical experiments are conducted on Ω𝑆 and Ω𝐿 . The numerical results show that compared to directly solving 

the eigenvalue problem on the fine grid, the two-grid discretization method based on shifted inverse iteration 
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requires less CPU time. Furthermore, as the grid size decreases, the advantages of the two-grid discretization 

method with shifted inverse iteration become more apparent, indicating the efficiency of our approach. Therefore, 

this method has strong practical value for solving eigenvalue problems with homogeneous mixed boundary 

conditions. 
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