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Abstract: In this paper, a limited capacity queueing system incorporating the effects of environmental
change and catastrophes is studied. The effect of environmental change is taken to be a function of the
number present in the system. We undertake the transient analysis of a limited capacity queueing
system with two environmental states in the presence of catastrophes. Transient solution of the
queueing model is obtained by using the probability generating function technique. Some interesting
particular cases of the queueing model with and without catastrophes are obtained. Measures of
effectiveness and steady state solutions of the model are also discussed.
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l. Introduction:

From the very beginning, the M/M/1 queue has been the object of systematic and through
investigations. In recent years, the attention has been focused to study the queueing systems on certain
extensions that include the effect of catastrophes. This consists of adding to the standard assumptions
the hypothesis that the number of customers is instantly reset to zero at certain random times. The
catastrophes occur at the service- facility as a Poisson process with rate & Whenever a catastrophe
occurs at the system, all the customers there are destroyed immediately, the server gets inactivated
momentarily, and the server is ready for service when a new arrival occurs. In this connection, a
special reference may be made to the paper by A. Di Crescenzo et al. [2].

The notion of catastrophe played a very important role in various areas of science and
technology. A large number of research papers have been published on population processes under the
influence of catastrophes; see, for instance, P. J. Brockwell [11,12], P. J. Brockwell, J. Gani and S. 1.
Resnick [13], E. G. Kyriakidis [5] and R. J. Swift [14], among others have discussed birth and death
models with catastrophes. These papers are also concerned with various quantities of interest, such as
time to extinction. It is also well known that computer networks with a virus may be modeled by
queueing networks with catastrophes [15].

It has been proved by A. Di Crescenzo et al. [2] that the M/M/1 catastrophized processes may be
suitable to approach a current hot topic of great biological relevance, concerning the interaction between myosin
heads and actin filaments that is responsible for force generation during muscle contraction. However, the force
of contraction may rise on changing other conditions like a change in temperature or pH or a slight stretching of
the fiber. In this paper, we have added another factor of environmental change, i.e. the change in the
environment affects the state of the queueing system. In other words, the state of the queueing system is a
function of environmental change factors.

By means of a new and extremely sophisticated instrumentation approach by K. Kitamura et al. [9], it
has been possible to prove that the sliding of a myosin head over the actin filament occurs by randomly
distributed minuscule steps eventually followed by a sudden reset (catastrophe) with an approximately
exponentially distributed dwell times. B. Kumar and D. Arivudainambi [3] obtained the transient solution of
M/M/1 queueing model with the possibility of catastrophes at the service station. N.K. Jain and D.K. Kanethia
[10] studied the transient analysis of a queue with environmental and catastrophic effects.

In this paper, we undertake the analysis of a queueing system in the presence of catastrophes and
environmental change in order to obtain some analytical results. In section 2, we have made the assumptions and

* E-mail: darvinder.kumar@pgdav.du.ac.in
DOI: 10.35629/4767-11052437 WWW.ijmsi.org 24 | Page



mailto:darvinder.kumar@pgdav.du.ac.in

A Queueing system incorporating the effects of Environmental change and Catastrophes

definitions of the model. The detailed analysis of the main model is done in section 3 and some particular cases
are obtained in section 4. In section 5 & 6, we have obtained the steady-state result and mean queue length.
Applications of the model are discussed in section 7.

1. Assumptions and Definitions:

(i) The customers arrive in the system one by one in accordance with a Poisson process at a
single service station. The arrival pattern is non-homogeneous, i.e. there may exists two arrival rates,
namely A, and 0 of which only one is operative at any instant.

(i) The customers are served one by one at the single channel. The service time is exponentially
distributed. Further, corresponding to arrival rate A, the Poisson service rate is u, and the service rate
corresponding to the arrival rate 0 is p,. The state of the system when operating with arrival rate A,
and service rate p, is designated as E whereas the other with arrival rate 0 and service rate p, is

designated as F.
(iii) The Poisson rate d_at which the system goes from environmental state E to F tends to

decrease or increase whereas at the same time the Poisson rate b_at which the system moves from

environmental state F to E tends to increase or decrease according as the numbers in the queue (say n)
increase or decrease from some fixed number (say N). We therefore define,

d, =B[L+&(N—n)] with n sN+1'
€

1
and 0 <n<N+ — <M
’
&
Also

b,=afl+e(n—N)] withn > N—l
€

and Q< N—lsn <M
et

Where M denotes the size of the waiting space and &, &' are positive ~ numbers such that & > %
and &' > 1 These restrictions on M also are necessary to avoid the negative values of d_

and b . When n=Nor £=0, b_gives the normal rate as o and when n=N or £=¢g'=0, d and b,
gives the normal rates as 3 and a.

(iv) When the system is not empty, catastrophes occur according to a Poisson process with rate &.
The effect of each catastrophe is to make the queue instantly empty. Simultaneously, the
system becomes ready to accept the new customers.

(v) The queue discipline is first- come-first-served.
(vi) The capacity of the system is limited to M. i.e., if at any instant there are M units in the
queue then the units arriving at that instant will not be permitted to join the queue, it will be
considered lost for the system.

Define,
P (t) = Joint probability that at time t the system is in state E and n units are in the queue, including
the one in service.
Q,(t) = Joint probability that at time t the system is in state F and n units are in the queue, including
the one in service.

R (t) = The probability that at time t there are n units in the queue, including the one in

service.

Obviously,

R,(1) =P (1) +Q (1)
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Let us reckon time t from an instant when there are zero customers in the queue and the system is in
the environmental state E so that the initial conditions associated with P _(t) and Q _(t) becomes,

1 : n=0
P (0) = .

0 : otherwise
Q. (0)=0; foralln.

I11. Formulation of Model and Analysis (Time Dependent Solution):
The differential-difference equations governing the system are:

d M
I Po(t)=—(Ay +dg +E&)Py(t)+ Py (1) +boQo (1) +E D Py(t);n=0 ... (1)
n=0
d
o Po(t)=—(Ay + 1y +dpy +E)Pp (D) +1yPryg (1) + 2 Py (1) +b,Qp (1) ;
O<n<M . (2)
d
I P (D)= ~(ug +dpy + )Py (1) + 21 Pyg () + by Qi (t) ;n =M - (3)
—Qo(t)— —(bg +&)Qq(t)+1pQq (t)+dgPy(t)+ & ZQ (t);n= e (4)
n=0
aQn(t)= (1 +b, +8) Qu(t)+ 1, Quua(t) +d P (t); 0<n< M e (5)
d
aQM(t): _(H2+bM+§)QM(t)+dMPM(t); n=M - (6)
Define, the Laplace Transform as
LT.[F@1= [ef(t)dt=f6s) . (7)
0
Now, taking the Laplace transforms of equations (1)—(6) and using the initial conditions, we get
(542, +dq +&)Py(8)=1 =41, Py(5)+b, Quls +&ZP - (®)
(S + )‘ + }'Ll + d + E.:)IS (S)zp“l Pn+l(s)+>‘l Pn—l(s)+ bn Qn (t) (9)
(s+p, +dy, +&)P,(s)=A,P,,(s)+b,, Qy(s) ... (10)
(s+Db, +&)Q,(s)=p, Q,(s)+d, P,(s +§ZQ . (1)
(s+m, +b, +&)Q,(8)=, Q,.1(s)+d, P,(5) - (12)
(s+1, +by +&)Qu(s)=dy Py(s) - (13)
Define, the probability generating functions
M
P(z,5)=) Py (s)2" ... (14)
v
Q(z:5)= ) Qn (5)2" ... (15)
n=0
M p—
R(z,5)=) Ry (s)z" ... (16)
n=0
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where
Ry (s)="Pp(s)+ Qu(s)

Multiplying equations (8)—(10) by the suitable powers of z, summing over all n and using equations
(14)-(16), we have.

Be'2?P'(2,5)+ ez’ Q(z,5)+ [\ 22 —z{s + A, +p, + E+BL+EN) 1+ 1, ]P(z 5)

M
+a(l-eN)zQ(z,s)=r, 2" (z-1)P,,(s)+ 1, (1 2)P, EzY P(s) ... 1)
n=0
Similarly, from equations (11)—(13) and using (14)—(16), we have

Be'z2P(z,5)+ 0e22 Q' (z,5)- B+ N)zP(z s)+[z{s+u2 +§+a(1—sN)}—u2]Q(z,s)
= 1,(z-1)Q,(s +§ZZQ ... (18)
Subtracting equation (18) from (17), we have.
Pa2? —2(s+ 2+ +8)+ 1, P(z.s)+ [u2—2(5+u2+§)] (z, ) 2" (z-1)Ry (s)
+1,(1-2)Py(s)— (2 —1)Q,(s) -2 - gzZP i ... (19)
Differentiating equation (19) with respect to z, we have -
boz2—z(s+2 +, + &)+ [P (2.5)+ [20, 2 (s + 2, + 1, + &) P(2,5)
tle—26 4, +9)]Q @)+, +2)Q2 ) 2 [(M+2)2 - (M+ 1) R, )
1B (0)-1, QE)-1-E2 P 6)-23°Q,0) e (20

Eliminating Q'(z,s) and Q(z,s) from equations (18), (19) and (20), we arrive at a computationally
convenient equation.

P'(z,s)+ ;]Z z)) P(z,s)= ni(z)[zl +2,Q,(8)+2,P,(s)+ 2, Py, (s) + zsz P.(s)+z, 26” (s)}

2

. (21)
where

n(z)=a,z* +a,2® +a,2° +a,z +a,
no(2) =2% [, —2(s + 1, +§)][a622 +ta;z+ aa]

)
n(z) A 1 D(2a,z+a,)
nz(Z) B Ko _Z(S"'Hz +§)+(B+C/Z)Z ’ ag (a622 +a7z+as)
(E —a7D/2a)

i e

+

c=_%
Wyag
a 1
B={a4— > {“23-7 _(S"'Hz"'&)as}}_
W, ag L, ag
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(ag-byB-bgc) 0 py
A=|(ag-byB-bgc) uy b4i
(a;-bgB) by O
ag pg (ag—byB-DbyC)
D=|a: by, (az—sz—bgC)i

ag O (a; —bs B)

ag 0 (ag—b;B-DbyC)
E=la7z ng (az—sz—b3C)§
ag by (a; —b3B)
ag 0
A=la, p, b,
ag b, O
b, =, a,—a; (stp,+€)
b, = u, ag-a, (stu,*+&)
b, =—a, (stp,+E)
b, =— (stp,+&)
a, = A (s+p, +&)ae+{s+u, +E+a(l—eN)}]
8, =—| (s+1, +E)PBA+EN) (541, + )+ Aty )+ 5+, + E+all—eN)).
Dpty, + (5411, + )5+ +1y +8) 20wy |
a, :[ S+, +E){2Bu, L+ &' N) —aep f+p, (S+ A, +py +8)
loe +(s+p, +&) }+{s+u, +E+all-eN)}
{5+ Hp +8)+ 1 (5+2g +1y +8) ) +(up 222, |
ay = B+ N+ (542 +1, +8)
fs+p, +E+al—eN)+(s+p, +8)} |
a5 =y 15
a, = —oel)
a, =ag (S+A, +u, +&)—Be (s+u, +&)
asz(B g'p,—oe ul)
2,=|- 22 (s +p, +&)oe + 5+, +E+all—eN)]]
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+2%1, [2(s + 1, + E)+a(l—eN)+ ag |- zp?
2,=2(z-1)| 1, {2(s+ 1, + &)+ all—aN)} - z(s+p1, +)-
S+ +eral-—eN)} o, @D —fu, -2+, +8) |

+,8 0z’ {Mz _Z(S"'uz +§)}
23:[ Lo {2(S+H2 +§)+a(l_8 N)}Z(Z _1)‘“11(5"‘}12 'H;)Zz (l—Z).
st +e+ral-eN) H-2)wpi+m 2’ ae
'{Hz _(S‘H'Lz 'H:)Z} ]
Z,= z" [23 (Z _1)}“1(3"‘”2 +§){S+P~2 +§+0‘(1_5N)}
-7’ (Z_l)kluz {2(S+H2 +§)+(1(1—8N)}+
z (Z—l)llug —ogz° )\‘l{Z(M +2)_(M +1)}{M2 _Z(S"'uz +§)}]
2, =2%(s+pu, +&) [(s+u, +&)—{s+u, +E+all-sN) ]+
221,E [oe+{s+p, +E+a(l—eN)}—(s+u, +&)]
Zo = 2[5+, +E)fs T, +E+al-eN) j+
2’16 [(xg +(S‘H'lz +§)+{S+I~L2 +§+0L(1—8N)}]—Z},L22§
On solving equation (21), we have

L1(2)+ L, (2)60 (S)"' L, (z)ﬁo (S)+ L4(Z)EM (S)+ L, (Z)Zﬁn (s)+Lg (Z)Zﬁn (s)
0 0 (22)
L(z)

P(z,5)=

where

T =

2° (2,2 +a,z+a,) exp?
p. D
_286
E—( _37DJ1
236 236
a7
X =
(z) Z+236
1a 2 *
a=||227| _|238
2&6 3.6
@)=] -5 1)
L.(z)=|—~=L(z)dz; j=1,2,3,4,5,6.
: '([nz(z)

Now, from equations (19) and (22), we have

L7(Z) + 60 (S)Ls(z) + 5o (S)Lg (Z)+ EM (S) Lio (Z) + iﬁn ()L, (2)+ ién (S)L1,(2)
Q(Z,S)z B(z)L(z) n=0 n=0 ...(23)
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where

L, (2)=L.(z) 9(2)-zL(2)

Ly (2)=L,(2) 9(2)-n,(z-1) L(z)

Ly (2)=L:(2) 9(2)-m(z-2) L(z)

L, (2)=L,(2) 9(z)+*, 2" (z-1) L(2)
L., (2)=Ls(2) 9(z)-& L(z)
L.,(2)=L;(2) 9(2)-& L(2)

0 @)=z (+1+p +8)-p, —1,2°]

B(z) =, ~z(s+1, +8)]
Adding equations (22) and (23), we have
C.(2)+ C.(2JQu6)+ Col2Ry(6)+ C. 2P 5)+ C: @) Py (9) + Co(2)3-Q, )
R(z,s)= = =
B(z) L(z)

where
C.@=B(@)L (2)+L,(2); i=1,2,3,4,5,6.

o (24)

Since,

.. (25)

M —
R(1,s)= z_: R,(s)=

Thus equation (24) for z=1, gives

w |

R(Ls)= 2= lim R(z,s) ... (26)

S z—l1

P(O,s)=F0(s)=lij P(z,s) ... (27)

And Q(O,s)z@o(s):lim Q(z,s) ... (28)
z—0
The equations (26), 27) and (28) on solution gives the values of
— — _ M _ M
Po(s)’ Qo(s)’ Pu (S)’an (s) and ZQn (s)-
n=0 n=0
Again, we have from equations (22) and (23) on setting z=1 and Py(s) = P,, Qu(s) =Q, . Pp(s) =P,

D P.(s)=P,and >"Q,(5) = Q,

L,(1)+L,10)Q, + L,Q)P, + L,@)P, + L5(1)§: P+ L6(1)§:Qn

P(L,s)= 0 o (29)
L)+ Ly (1)Q, + Ly, + LoWP,, + L) Py + Ly()3Q,
Qs)- B LQ) - - - (30)

These on inversions give the respective probabilities for the system to be in the environmental states
E and F.
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IV. Particular Cases:

Case | Setting n=N or & =0 in equations (22) and (23), (i.e., when the rate of change of environment
from state F to E is constant), we have

(2 L))+ L@ s)+ La2Py 5)+ LD P9+ L (30, 9)

P(z,s)= @) n=0 ..(31)

L(2)+ Ly(2)0u(6) + Ly@Po(s) + Lis(2)Pra(8)+ L@ Po(s) + L@ By 9)
Qz:s)= o S 62
where

Li(2)=L(2)],
L' (z)= L(Z)L:o
B'(2)=B(2)]

On adding equations (31) and (32), we have.

Ci2)+CL2)Qy(5)+ CH2)Pyfs)+ CL (2)Pu5)+ LA P () + D 0,9
5 (z) X (Z) = = .. (33)

;i=1,2,3, ... 12

Cl(z)=B(z)L(z)+L,,4(2); i=1,2,3,4,5,6.

The unknown quantities Q,(s), P,(s), P, (s),fllsn (s)and iﬁn (s) can be evaluated as before.
n=0 n=0

Case Il Setting £=&'=0o0r n=N in equation (17) and (18), (i.e. when the rates of interchange of
environmental states from E to F and F to E is constant), we have

X3 (Z)P(z,s)+ Xo (z)Q(z,s)+X3 (z) =0 ... (34)
Xy (Z)P(z,s)+ X5 (z)Q(z,s)+X6 (z) =0 .... (35)
where
Xy(2)= —[M 2%~z (s+ My +1y +B+§)+M1]
X9 (z)z -0z
Xa(0)=~ b () P+ M 120y 92122 3 P 6)
n=0
Xy (z)=pz

X5 (z)=[ug —z(s +pg +a+£)]

X6 (Z):[Mz(z ~1)Qq (s)+&2 %én (S)}

n=0
From equations (34) and (35), we have
Xy (2)Xg (2)- X3 (2)X5 (2)
P R IR K, IR, ) -9
Q,s)= X4 (2)X3 (2)- X, (2)X6 (2)
X (2)X5(2) - X3 (2)X 4 (2)

e (37)
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Thus, we have

-0, ()X, @10, 6)+22 3.
X.(2)-X ()]mmw[x()
z[X,(z)- ]+<§ZZP

-7%s +sX7() ( )

Qu(8) [X,(2)=X, (@)]+ 1, (1-2)
X,(2)] @-2)P(s)+
-X,(2)]

(2

.. (38)
)-2&(a+p+E)

X;(2) =2 2° =27 (0 + 1y + 1, + @+ B+ 26)+2(y +11,)
Xg(2)=-2" M (a+p, + &)+ 2 [opy +p, (0 4y +B+E) ] —pup,.

sy S+a+é
And P(l’s)_n=opn(s)_—s(s+a+B+§)
ZM_ B

Relation (38) is a polynomial in z and exists for all values of z, including the three zeros of the
denominator. Hence Py(S), Qg (s)and Py,(s) are obtained by setting the numerator equal to zero
and substituting the three zeros, o,, o, and a, (say) of the denominator (at each of which the
numerator must vanish).

Now letting a—o0, B—0 and setting p,= p,= p (say) in relation (38), we have

@-2)uR,(s)-@-2)r, 2" P, (s)—z-¢&zls
r(z,s)=
MZP-Z(s+ A +p+E)+u

. (39)

Ro(s)=Po(s)+ Qo (s)
r(z,s)=lim [ lim R(z, s)}

B—0Lo—x
Relation (39) is a polynomial in z and exists for all values of z, including the two zeros of the
denominator. Hence, Rg(s) and Py, (s) can be evaluated as before.

Case Il Putting £=&'=1, N=1 in equation (24), (i.e. when d =Bnand b =an), we have.

Ci(2)+ Qu(5)C5(2) + Py (8)C5(2) + Py (5)C}(2) + D P (8)CE(2) + D Q, (5)C (2)

R(z,s) = n=0 n=0 ... (40)
B(z)L"(2)

where

L"(z)=L(z)
Ci(2)=Ci(2)

e=¢'=1,N=1

i=1,2,3,4,5,6

e=¢'=1, N:l;
V. Steady State Results:

This can at once be obtained by the well-known property of the Laplace transform given below:

Iim f(t) =lim s f(s) If the limit on the left hand side exists.
t—oo s—0
Thus if
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M
R(z)=>R, z"
n=0
Then
R(z)=lim s R (z,s)
s—0
By using this property, we have from equation (24) for the steady state
M M
N, (2)Qo+ N, (2)P, + N; ()P + N, @)D P, + N5 (2)>Q, + N
R(z): _ n=0 n=0 . (8)

B*(z)L(2)

where
R, = Lim sRy(s)

NI(Z) ( ) |+1( )+L|+7( )L:O ;i=1,2,3,4,5

8" (2)-8@)so
@)L

oor_*
~~

N

Il

-

N Y3

N

Il
Ty
—~ ~ DN
~~~ N
N ~  ~—
~ @ «
«Q —_
/—\ —_ N
~
|
-
N
—_~
N
|
[EEN
~
l_
—
N
~

* (.o'_*
~~

N

Il
oo'_*

-
=
o
—~~
N

z)+ M zM+l(z —l)L(z)

2)-&L(z)

@@ e0) -5 L)

and N = The constant of integration.

=L

i—\'_*
H
—~
N
N—" \r N—
* U'I'_*
=
N—
«

M M
The unknown quantities P, Q; P, > P and ) Q, can be evaluated as before.

Particular cases:
Case | Relation (33), on applying the theory of Laplace transform, we have

QN (2)+ N3 ()P, + N (2P + Ny @)D Py + Ny @)D" Q, 4N’

R n=0 n=0 .. (42
o T “

where,

Ni@)-B@)L @)L (e) 5 isn234s
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L;*(z) = L*2*(Z) g(z)— Ho (z —1)L’(z)

L7 @)- L) o)1y (2 -)L)
L’ig(z) = L’:(z) g(z)+kle+l(z —1)L’(z)
L, @=L @90 -&L@)

L,@ =L @9 -&L@)
N' = the constant of integration.

M M
The unknown quantities Q , P, P,,, an andZ:Qn can be evaluated as before.

n=0 n=0

Case Il Relation (38), on applying the theory of Laplace transforms gives
pz(l—z){az+z(kl+ul+B+<§)—k122 —Hl}Q0+
w@-2)Bz—{u, -2 (uy +a+8) } IPg + 2 2" (1-2){uy -2 (uy + 0 +8)-Pz} Py +
() S2 @B OB 2~ 20wy rat B2 s (aD)ing 2y vt pr )]
2° 0y (g + o+ 8)=2° Ay (g + o+ &)+ {orpy + g (hy +py +P+E) J+E(a+B+E)]
+z[{orpy + g (g +py +B+E) f+papp |- pam,
or, we can write
T(2)Qq + N(2)Py+L(2)Py +M(2)
K(2)

Where T(z), N(z) and L(z) are the co-efficient of Q , P, and P respectively in the numerator of
equation (43) and K(z) is the denominator of (43).

Equation (44) is a polynomial in z and exists for all values of z, including three zeros of the
denominator. Hence Q,, P, and P, can be obtained by setting the numerator equal to zero.

Substituting the three zeros b, b, and b, (say) of the denominator (at each of which the numerator
must vanish).

.. (43)

R(z)=

.. (44)

Three equations determining the constants Q, P, and P, are

T(by)Qq + N(by )Py +L(by )Py =—M(by) ... (45)
T(b2)Qq +N(by)Py +L(by)Py =—M(by) ... (46)

After solving these equations, we have

—M(by)As; +M(by)A, —M(b3)As,

Qo = A
Py = M(b;)A12 —M(by)Az, + M(b3)As,
A
P _ —M(by)As3+M(by) Ay —M(bs)As;
M =
A
where
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T(b;) N(by) L(by)
A=|T(by) N(bz) L(by)
T(bz) N(bs) L(bs)
Aij is the co-factor of the (i, j)th element of A.
By putting the values of Q , P, and P, in equation (44), we have
T(Z)[_ M (b, )JA,; + M(b,)A,, - M(bs)A31]+ N(Z)[M(bl)AIZ —M(b,)A,, + M(b, )A 32]
R (Z)= + L(Z)[_ M(bl)A13 + M(bz)Azs - M(bs)A33]+ A-M (Z)

.. (48)
A-K(2)
V1. Mean Queue Length:
Define,
Lq: Expected number of customers in the queue including the one in service.
Then
Lq =R (Z)|z:1

Therefore, from equation (48), we have
KO- Mlb,)A, + M(b, A, Moy A, -+ N'W){M(b,)A, - M(b, A, + M(b, A}
+ L= Mlby A, + Mo, JAz; ~M(b;)As§ + AM )] - [T - M(b, JA,, +Mlb, A,
( 3)A31} (){ ( )A12 - M(b ) + M(bz)A }‘H—(l){ M( 1)A13 + M(bz)Aza
| MbagA-METKE)
“ A-[KQF

w)>
———
+

.. (49)
where dashes denotes the first derivative w. r. t. z.
Relation (39), on applying the theory of Laplace transforms gives

)= (1-2z)uRy —(1-2)n, 2" Py — &2

r(z .. (50)
AMz2 -z +p+E)+p
where
r(z)=limsr(z,s)
s—0

Equation (50) is a polynomial in z and exists for all values of z, including the two zeros of the
denominator. Hence R and P, can be obtained by setting the numerator equal to zero. Substituting

the two zeros a, and a, (say) of the denominator (at each of which the numerator must vanish).

Two equations determining the constants R and P, are
M-+1
(1-a;)uRo—(1-a;)r 8y Py =Eay o (51)

M+1
(1-az)uRo—(1-az)h a3~ Py =&a, - (52)
On solving these equations, we have
a;—a a A a;—a
Pm = l\(/l+11 i/l)+l and Ro =7— =~ 25 +tag |v|+11 ?\/I+1 ’
a; T —as (1 aZ)M u a; ~—ajp
where

M(Q-a;) L-ap)=-¢ a;>1

Now, from equation (50), we have
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(a —a ) aM+1_ZM+1
&+}L1(1_Z)(1_a2) M+11 ?\/I+1 : _
al —az a2 z (52)
M(z-a1)(ap -1)

r.= The co-efficient of z"

1 n+1 n
ay M-n a7~ —aj M n
rh =———|&(L-Py)+a; —} (— as ... (54)
" H(l—az){ a;—a; H

If £=0 (i.e., no catastrophe is allowed), then from equation (50), we have

r(z)=

_ M+1
r(Z): MRO 7\‘12 PM (55)
u—»az
The condition, lim r (z)=1 gives
z—1
HRy =M Py =p-X - (56)

As r(z) is analytic, the numerator and denominator of equation (55) must vanish simultaneously for
z=p/A\1, which is a zero of its denominator. Equating the numerator of equation (55) to zero for z=
/A1 we have

Ro=p M Py, p=A/n<1 e (57)
Relation (56) and (57) gives
R_ 1P 5 _(@-pp"
0 1_p|v|+1 ! M 1_pM+l
Now, from equation (55), we have
r(z)= ,5'1 : (p2) ... (58)
1-p™M* l-pz

which is a well known result of the M/M/1 queue with finite waiting space M.

When there is an infinite waiting space, the corresponding expression for r(z) is obtained by letting M
tends to infinity in equation (58), If (p,|z]) <1.

1-—

r(z2)=—"2 . (59)
1-pz

which is again a well known result of the M/M/1 queue with infinite waiting space.

Case Il Relation (40), on applying the theory of Laplace Transform gives
M M

H, (2)Qq + H, (2)P, + H, (2)Py + H4(Z)Z P, + Hs(Z)ZQn +H'
n=0 n=0

B,(z) H(z)

... (60)

HO-BELE L@,  FL2sas
L1(2)=| LZ—(‘Z)L(Z)} - dz  ;j=2.34,5,6.
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; k=38,9, 10, 11, 12.

Li(2)=L(2)

H' = the constant of Integration.

g=g'=1,N=1

The unknown quantities of equation (60) can be evaluated as before.

VII. Applications of the model in biological phenomenon & agriculture:

1. There are many creatures such as cockroaches, ants, mosquitoes etc whose movement is restricted
with the change of temperature (environment). As the temperature drops below a critical temperature
say To, the movement (production) of such like creatures becomes almost zero. On the other hand, as
the temperature goes higher than To the movement becomes normal. The catastrophes may occur with
these creatures in both the environmental states i.e., spray etc which make them zero instantaneously.
Then the number of such like creatures present in any area can be estimated by using the described
queueing model with environmental change and catastrophes.

2. In agriculture, if a crop is infected with a particular species of insects due to change in temperature
(environment), we may use some chemical agents or compounds to treat such type of insects. The
number of bacteria that destroys the crop, in large part, relies on the effectiveness and amount of the
chemical reagents used. In other words, the use of the chemical reagents can wipe out the whole of the
insects or a part of it. The effect of these chemical reagents on bacteria which make them zero
instantaneously can be regarded as the occurrence of a catastrophe.

VIII. Conclusion:

In this paper, we have established the effects of environmental change and catastrophes on the
limited capacity queueing system. We have obtained some particular cases and steady state solutions.
Some measures of effectiveness are also obtained.
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