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Abstract: In this paper, a limited capacity queueing system incorporating the effects of environmental 

change and catastrophes is studied. The effect of environmental change is taken to be a function of the 

number present in the system. We undertake the transient analysis of a limited capacity queueing 

system with two environmental states in the presence of catastrophes.  Transient solution of the 

queueing model is obtained by using the probability generating function technique. Some interesting 

particular cases of the queueing model with and without catastrophes are obtained. Measures of 

effectiveness and steady state solutions of the model are also discussed. 
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I. Introduction: 

From the very beginning, the M/M/1 queue has been the object of systematic and through 

investigations. In recent years, the attention has been focused to study the queueing systems on certain 

extensions that include the effect of catastrophes.  This consists of adding to the standard assumptions 

the hypothesis that the number of customers is instantly reset to zero at certain random times. The 

catastrophes occur at the service- facility as a Poisson process with rate . Whenever a catastrophe 

occurs at the system, all the customers there are destroyed immediately, the server gets inactivated 

momentarily, and the server is ready for service when a new arrival occurs.  In this connection, a 

special reference may be made to the paper by A. Di Crescenzo et al. [ 2]. 

The notion of catastrophe played a very important role in various areas of science and 

technology. A large number of research papers have been published on population processes under the 

influence of catastrophes; see, for instance, P. J. Brockwell [11,12], P. J. Brockwell, J. Gani and S. I. 

Resnick [13], E. G. Kyriakidis [5] and R. J. Swift [14], among others have discussed birth and death 

models with catastrophes. These papers are also concerned with various quantities of interest, such as 

time to extinction. It is also well known that computer networks with a virus may be modeled by 

queueing networks with catastrophes [15]. 

It has been proved by A. Di Crescenzo et al. [2] that the M/M/1 catastrophized processes may be 

suitable to approach a current hot topic of great biological relevance, concerning the interaction between myosin 

heads and actin filaments that is responsible for force generation during muscle contraction. However, the force 

of contraction may rise on changing other conditions like a change in temperature or pH or a slight stretching of 

the fiber. In this paper, we have added another factor of environmental change, i.e. the change in the 

environment affects the state of the queueing system. In other words, the state of the queueing system is a 

function of environmental change factors.  

By means of a new and extremely sophisticated instrumentation approach by K. Kitamura et al. [9], it 

has been possible to prove that the sliding of a myosin head over the actin filament occurs by randomly 

distributed minuscule steps eventually followed by a sudden reset (catastrophe) with an approximately 

exponentially distributed dwell times. B. Kumar and D. Arivudainambi [3] obtained the transient solution of 

M/M/1 queueing model with the possibility of catastrophes at the service station. N.K. Jain and D.K. Kanethia 

[10] studied the transient analysis of a queue with environmental and catastrophic effects.            

In this paper, we undertake the analysis of a queueing system in the presence of catastrophes and 

environmental change in order to obtain some analytical results. In section 2, we have made the assumptions and 
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definitions of the model. The detailed analysis of the main model is done in section 3 and some particular cases 

are obtained in section 4. In section 5 & 6, we have obtained the steady-state result and mean queue length. 

Applications of the model are discussed in section 7. 

 

II. Assumptions and Definitions: 

(i) The customers arrive in the system one by one in accordance with a  Poisson process at a 

single service station. The arrival pattern is non-homogeneous, i.e. there may exists two arrival rates, 

namely 
1
 and 0 of which only one is operative at any instant.  

(ii) The customers are served one by one at the single channel. The service time is exponentially 

distributed. Further, corresponding to arrival rate 
1
 the Poisson service rate is 

1
 and the service rate 

corresponding to the arrival rate 0 is 
2
. The state of the system when operating with arrival rate 

1
 

and service rate 
1
 is designated as E whereas the other with arrival rate 0 and service rate 

2
 is 

designated as F.   

(iii) The Poisson rate d
n
 at which the system goes from environmental state E to F tends to 

decrease or increase whereas at the same time the Poisson rate b
n
 at which the system moves from 

environmental state F to E tends to increase or decrease according as the numbers in the queue (say n) 

increase or decrease from some fixed number (say N). We therefore define,   

  
ε'

1
NnwithnNε'1βdn   

and   0  n  N + 
 

1
  M  

Also  

  
ε

1
NnwithNnε1αbn   

 and  Mn
ε

1
N0   

Where M denotes the size of the waiting space and  , '  are positive  numbers such that    
N

1
 

and '   
NM

1


. These restrictions on M  also are necessary to avoid the negative values of d

n
 

and b
n
. When  n=N or  =0, b

n
 gives the normal rate as  and when n=N or  = ' =0,  d

n
 and b

n
 

gives the normal rates as  and . 

(iv) When the system is not empty, catastrophes occur according to a   Poisson process with rate . 

The effect of each catastrophe is to make  the queue instantly empty. Simultaneously, the 

system becomes ready  to accept the new customers.  

(v) The queue discipline is first- come-first-served.  

(vi) The capacity of the system is limited to M. i.e., if at any instant there  are M units in the 

queue then the units arriving at that instant will   not be permitted to join the queue, it will be 

considered lost for the  system.  

Define,  

P
n
 (t) =  Joint probability that at time t the system is in state E and n units are in the queue, including 

the one in service.   

Q
n
(t) =  Joint probability that at time t the system is in state F and n units are in the queue, including 

the one in service.  

R
n
(t) =  The probability that at time t there are n units in the queue, including the one in 

service.  

Obviously, 

  R
n
(t) = P

n
(t) + Q

n
(t)  
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Let us reckon time t from an instant when there are zero customers in the queue and the system is in 

the environmental state E so that the initial conditions associated with P
n
(t) and Q

n
(t) becomes,  

 P
n
(0) = 



 

otherwise;0

0n;1
 

 Q
n
(0) = 0 ;     for all n.  

III. Formulation of Model and Analysis (Time Dependent Solution): 

The differential-difference equations governing the system are:  

            ;tPtQbtPtPdtP
dt

d M

0n

n00110010 


  n = 0 ..... (1) 

            ;tQbtPtPtPdtP
dt

d
nn1n11n1nn11n    

    0 < n < M           ..... (2) 

          ;tQbtPtPdtP
dt

d
MM1M1MM1M    n = M          .... (3) 

            ;tQtPdtQtQbtQ
dt

d M

0n

n0012000 


  n = 0  .... (4) 

          ;tPdtQμtQξbμtQ
dt

d
nn1n2nn2n    0 < n < M   .... (5) 

        ;tPdtQξbμtQ
dt

d
MMMM2M    n = M     .... (6) 

Define, the Laplace Transform as 

L.T. [f (t)] =    


 
0

st sfdttfe       .....(7)  

Now, taking the Laplace transforms of equations (1)–(6) and using the initial conditions, we get  

         



M

0n

n0011001 sPξsQbsPμ1sPξdλs    .... (8) 

         tQbsPλsPμsPξdμλs nn1n11n1nn11       .... (9) 

       sQbsPλsPξdμs MM1M1MM1                        .... (10) 

         



M

0n

n001200 sQξsPdsQμsQξbs     .... (11) 

       sPdsQμsQξbμs nn1n2nn2         .... (12) 

     sPdsQξbμs MMMM2         .... (13) 

Define, the probability generating functions  

   



M

0n

n
n zsPs,zP        .... (14) 

   



M

0n

n
n zsQs,zQ        .... (15) 

   



M

0n

n
n zsRs,zR        .... (16) 
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where  

     sQsPsR nnn       

Multiplying equations (8)–(10) by the suitable powers of z, summing over all n and using equations 

(14)–(16), we have. 

         sz,PμNε1βξμλszzλsz,Qzεαsz,Pzεβ 111

2

1

22   

             


 
M

0n

n01M

1M

1 sPzξzsPz1μsP1zzλsz,QzNε1α   .... (17) 

Similarly, from equations (11)–(13) and using (14)–(16), we have  

             sz,Q
2

μNε1αξ
2

μszsz,PzNε1βsz,Q2zεαsz,P2zεβ                    

     



M

0n

n02 sQzξsQ1zμ      .... (18) 

Subtracting equation (18) from (17), we have.  

             sP1zzλsz,Qξμszμsz,Pμξμλszzλ M

1M

122111

2

1  

            



M

0n

n

M

0n

n0201 sQzξsPξzzsQ1zμsPz1μ   .... (19) 

Differentiating equation (19) with respect to z, we have  

         sz,Pξμλszλ2sz,Pμξμλszzλ 111111

2

1   

               sP1Mz2Mzλsz,Qξμssz,Qξμszμ M

M

1222            

       



M

0n

n

M

0n

n0201 sQξsPξ1sQμsPμ    .... (20) 

Eliminating Q'(z,s) and Q(z,s) from equations (18), (19) and (20), we arrive at a computationally 

convenient equation.  

 
 
 

 
 

         







 



M

0n

n6

M

0n

n5M403021

22

1 sQzsPzsPzsPzsQzz
zη

1
sz,P

zη

zη
sz,P  

         .... (21) 

where   

  54

2

3

3

2

4

11 azazazazazη   

     87

2

622

2

2 azazaξμszμzzη   
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0bBba
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A
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1

Bba0a

CbBbaba

CbBbaa

D
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32247

21328

 

 

 

 









1

Bbaba

CbBbaa
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E

3146

32227
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46
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b
1
 = 

2
 a

7
–a

8
 (s+

2
+) 

b
2
 = 

2
 a

6
–a

7
 (s+

2
+) 

b
3
 = – a

6
 (s+

2
+) 

b
4
 = – (s+

2
+) 

     Nε1αξμsαεξμsλa 2211   

          .Nε1αξμsμλξμsNε1βξμsa 221222 

    αμελ2ξμλsξμsμλ 2111221   

       ξμλsμμαN1μβ2ξμsa 1121223    

      Nε1αξμsξμsαε 22   

        1
2

211221 zss   

     2111

2

24 μμξμλsNε1βμa   

       22 sN1s  

2

215 μμa   

2

16 λεαa   

   ξμsβξμλsαa 2117   

 128 μαμβa   

      N1αξμsαξμszz 22

3

1    
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     2

222

2 μzαN1αξμs2μz  

           ξμszN1αξμs2μ1zzz 2222       

         2

22

2

222 sz1zN1s   

       ξμszμzαμ 22

2

2    

           .z1zξμsμ1zzNε1αξμs2μμz 2

212213   

        2

1

2

212 μμμz1N1αξμs z  

     zξμsμ 22   

        N1αξμsξμsλ1zzzz 221

3M

4   

         Nε1αξμs2μλ1zz 221

2
 

         ξμszμ1M2Mzλzεαμλ1zz 221

22

21   

       

     ξμsNε1αξμsαεξμz

N1αξμsξμsξμsξzz

222

2

222

3

5



 
 

    

      
2

2222

2

22

3

6

zμNε1αξμsξμsαεξμz

Nε1αξμsξμsξzz




  

On solving equation (21), we have  

 
             

 zL

(s)Q(z)L(s)P(z)LsPzLsPzLsQzLzL

sz,P

M

0n

n6

M

0n

n5M403021 




  ...(22) 

where  
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ξμszμzL 2
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2

6
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6a2

D
D   
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7
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1
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a
EE 
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½
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8
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6
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a

2

1
a




































  

 
 

  ;zdzL
zη

z
zL

Z

0 2

j

j     j =1, 2, 3, 4, 5, 6. 

Now, from equations (19) and (22), we have  

 
             

   zLzB

(z)L(s)Q(z)L(s)PzLsPzLsPzLsQzL

sz,Q
12

M

0n

n11

M

0n

n10M90807 




 …(23) 
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where 

       zLzzgzLzL 17   

         zL1zμzgzLzL 228   

         zL1zμzgzLzL 139   

         zL1zzλzgzLzL 1M

1410  
 

       zLξzzgzLzL 511   

       zLξzzgzLzL 612   

    2

1111 zλμξμλszzg   

    ξμszμzB 22   

Adding equations (22) and (23), we have  

 
             

   zLzB

(s)Q(z)C(s)P(z)CsPzCsPzCsQzCzC

sz,R

M

0n

n6

M

0n

n5M403021 




  .... (24) 

where  

C
i
 (z) = B (z) L

i
 (z) + L

i+6
 (z) ;  i=1, 2, 3, 4, 5, 6.  

Since,  

    



M

0n

n
s

1
sRs,1R                                                                    .... (25) 

Thus equation (24) for z=1, gives 

   s,zRlim
s

1
s,1R

1z
        .... (26) 

     s,zPlimsPs,0P
0z

0


       .... (27) 

And         s,zQlimsQs,0Q
0z

0


       .... (28) 

The equations (26), (27) and (28) on solution gives the values of 

      


M

0n

n

M

0n

nM00 (s)Qand(s)P,sP,sQ,sP .  

Again, we have from equations (22) and (23) on setting z=1 and  sP0  = P
0
,  sQ0  =Q

0
 ,  sPM  = P

M
 

,
n

M

0n

nn

M

0n

n Q(s)QandP(s)P  


 

 
       

 1L

Q(1)LP(1)LP1LP1LQ1L1L

s1,P

M

0n

n6

M

0n

n5M403021 




   .... (29) 

 
       

   1L1B

Q(1)LP(1)LP1LP1LQ1L1L

s1,Q

M

0n

n12

M

0n

n11M1009087 




   .... (30) 

 

These on inversions give the respective probabilities for the system to be in the environmental states 

E and F. 

 



A Queueing system incorporating the effects of Environmental  change and Catastrophes 

DOI: 10.35629/4767-11052437                              www.ijmsi.org                                         31 | Page 

IV. Particular Cases: 

Case I Setting n=N or  =0 in equations (22) and (23), (i.e., when the rate of change of environment 

from state F to E is constant), we have  

 
             

 zL

(s)Q(z)L(s)P(z)LsPzLsPzLsQzLzL

sz,P

M

0n

M

0n

n6n5M403021






 
   ...(31) 

 
             

   zLzB

(s)Q(z)L(s)P(z)LsPzLsPzLsQzLzL

sz,Q

M

0n

n12

M

0n

n11M1009087







 ...(32) 

where 

   
0εii zLzL


 ;  i=1, 2, 3, . . . . 12. 

   
0ε

zLzL


  

   
0ε

zBzB


  

On adding equations (31) and (32), we have.  

 
             

   zLzB

(s)Q(z)C(s)P(z)CsPzCsPzCsQzCzC

sz,R

M

0n

n6

M

0n

n5M403021







 ... (33) 

where 

      6iii LzLzBzC 
 (z) ;  i=1, 2, 3, 4, 5, 6. 

The unknown quantities       


M

0n

n

M

0n

nM00 (s)Qand(s)P,sP,sP,sQ can be evaluated as before. 

Case II Setting 0 or n=N in equation (17) and (18), (i.e. when the rates of interchange of 

environmental states from E to F and F to E is constant), we have  

          0zXs,zQzXs,zPzX 321      .... (34) 

          0zXs,zQzXs,zPzX 654      .... (35) 

where 

    111
2

11 szzzX   

  zzX2   

           







 




M

0n

nM
1M

1013 sPzzsPz1zsP1zzX  

  zzX4   

     225 szzX  

        







 



M

0n

n026 sQzsQ1zzX  

From equations (34) and (35), we have  

 
       
       zXzXzXzX

zXzXzXzX
s,zP

4251

5362




      .... (36) 

 
       
       zXzXzXzX

zXzXzXzX
s,zQ

4251

6134




      .... (37) 
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Thus, we have  

 

                 

               

           

       ξβαξzzXz1zXssz

zXzXsPzξzXzXz

sPz1zXzXzλsPzXzX

z1μzXzXsQzξsQzXzX1zμ

sz,R
2

87

22

45

M

0n

n45

M45

1M

1054

112

M

0n

n0122




















 .... (38) 

where 

     21211

23

17 μμz2ξβαμμλzzλzX   

       .μμξβμλμμαzξμαλzzX 21112121

2

8   

And       
 ξβαss

ξαs
sPs1,P

M

0n

n







 

   
 





ss

sQs,1Q
M

0n

n
 

Relation (38) is a polynomial in z and exists for all values of z, including the three zeros of the 

denominator. Hence      sPandsQ,sP M00  are obtained by setting the numerator equal to zero 

and substituting the three zeros, 
1
, 

2
 and 

3
 (say) of the denominator (at each of which the 

numerator must vanish).    

Now letting , 0 and setting 
1
= 

2
=  (say) in relation (38), we have  

 
       

  μξμλszzλ

z/sξzsPzλz1sRμz1
sz,r

1

2

1

M

1M

10








   .... (39) 

where 

      sQsPsR 000   

    







s,zRlimlims,zr

0
 

Relation (39) is a polynomial in z and exists for all values of z, inc luding the two zeros of the 

denominator. Hence,    sPandsR M0  can be evaluated as before.   

Case III Putting 1 , N=1 in equation (24), (i.e. when d
n
=n and b

n
=n), we have.  

(z)LB(z)

(z)C(s)Q(z)C(s)P(z)C(s)P(z)C(s)P(z)C(s)Q(z)C

s)R(z,
6

M

0n

n5

M

0n

n4M30201







 ... (40) 

where 

    
1N,1εε

zLzL


  

   
1N,1εεii zCzC


 ;   i=1, 2, 3, 4, 5, 6 

V. Steady State Results: 

This can at once be obtained by the well-known property of the Laplace transform given below:  

   sfslimtflim
0st 

 ,  If the limit on the left hand side exists.  

Thus if   
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M

0n

n
n zRzR  

Then   

   s,zRslimzR
0s

  

By using this property, we have from equation (24) for the steady state  

 
     

   zLzB

NQ(z)NP(z)NPzNPzNQzN

zR
**

M

0n

n5

M

0n

n4M30201 



   .... (41) 

where 

  sRsLimR n
0s

n


  

        
0s

*

7i

*

1ii zLzLzBzN


   ; i=1, 2, 3, 4, 5 

     0szBz
*

B   

   
0s

zLz
*

L


  

 
 

  dzzL
z

2
η

i
z

z
*
i

L  ; i=1, 2, 3, 4, 5, 6 

         zL1z2μzgz
*
2Lz

*

8
L   

         zL1z1μzgz
*
3Lz

*

9
L   

         zL1z
1M

z1λzgz
*
4Lz

*

10
L 


  

       zLξzzgz
*

5
Lz

*

11
L   

       zLξzzgz
*

6
Lz

*

12
L   

and N = The constant of integration.   

The unknown quantities P
0
, Q

0,
 P

M
, 



M

0n

n

M

0n

n QandP can be evaluated as before. 

Particular cases: 

Case I Relation (33), on applying the theory of Laplace transform, we have  

 
     

   zTzT

NQ(z)NP(z)NPzNzNzNQ

zR
21

M

0n

n5

M

0n

n4M30210






P

  .... (42) 

where, 

       
0s

z
**

7i
Lz

**
1i

LzBz
i

N





  ;  i=1, 2, 3, 4, 5. 

   
0s1 zBzT


  

 
 

 



















0

zL
z

2
η

j
z

z
**
j

L  dz  ; j=2, 3, 4, 5, 6. 
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3
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9
L
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2
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8
L
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1M
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5
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6
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L   

N' = the constant of integration.  

The unknown quantities Q
0
, P

0
, P

M
, 



M

0n

n

M

0n

n QandP can be evaluated as before.  

Case II Relation (38), on applying the theory of Laplace transforms gives  

 

    
          

          
         

    21211121

112121
2

21
3

22111
2

1

M22
1M

10221

01
2

1112

z

zz

zzz/z

Pzzz1zPzzz1

Qzzzz1

zR















.... (43) 

or, we can write  

 
       

 zK

zMPzLPzNQzT
zR M00 
     .... (44) 

Where T(z), N(z) and L(z) are the co-efficient of Q
0
, P

0
 and P

M
 respectively in the numerator of 

equation (43) and K(z) is the denominator of (43).  

Equation (44) is a polynomial in z and exists for all values of z, including three zeros of the 

denominator. Hence Q
0
, P

0
 and P

M
 can be obtained by setting the numerator equal to zero. 

Substituting the three zeros b
1
, b

2
 and b

3
 (say) of the denominator (at each of which the numerator 

must vanish).  

Three equations determining the constants Q
0
, P

0
 and P

M
 are 

       1M10101 bMPbLPbNQbT      .... (45) 

       2M20202 bMPbLPbNQbT      .... (46) 

       3M30303 bMPbLPbNQbT      .... (47) 

After solving these equations, we have  

     

A

AbMAbMAbM
Q 313212111

0


  

     

A

AbMAbMAbM
P 323222121

0


  

     

A

AbMAbMAbM
P 333232131

M


  

where 
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     333

222

111

bLbNbT

bLbNbT

bLbNbT

A  

A
ij
 is the co-factor of the (i, j)

th
 element of A. 

By putting the values of Q
0
, P

0
 and P

M
 in equation (44), we have 

 

                 
          

 zKA

zMAAbMAbMAbMzL

AbMAbMAbMzNAbMAbMAbMzT

zR 333232131

323222121313212111







  . ... (48) 

 

VI. Mean Queue Length: 

Define,  

L
q
= Expected number of customers in the queue including the one in service.  

Then  

L
q
 =  

1z
zR


   

Therefore, from equation (48), we have  

                   
                
                 

      

  2
333

232131323222121313

212111333232131

323222121313212111

q
1KA

1K1MAAbM

AbMAbM1LAbMAbMAbM1NAbM

AbMAbM1T1MAAbMAbMAbM1L

AbMAbMAbM1NAbMAbMAbM1T1K

L










   

          .... (49) 

where dashes denotes the first derivative w. r. t. z.  

Relation (39), on applying the theory of Laplace transforms gives  

 
   

  






1
2

1

M
1M

10

zz

zPzz1Rz1
zr      .... (50) 

where  

   s,zrslimzr
0s

  

Equation (50) is a polynomial in z and exists for all values of z, including the two zeros of the 

denominator. Hence R
0
 and P

M
 can be obtained by setting the numerator equal to zero. Substituting 

the two zeros a
1
 and a

2
 (say) of the denominator (at each of which the numerator must vanish). 

Two equations determining the constants R
0
 and P

M
 are 

    1M
1M

11101 aPaa1Ra1  
    .... (51) 

    2M
1M

21202 aPaa1Ra1  
    .... (52) 

On solving these equations, we have  

 
1M

2
1M

1

21
M

aa

aa
P

 


  and 

  1M
2

1M
1

211M
2

1

2

2
0

aa

aa
a

a1

a
R

















  ; 

where  

    1a,a1a1 1211   

Now, from equation (50), we have 
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   1aaz

za

za

aa

aa
a1z1

zr
211

2

1M1M
2

1M
2

1M
1

21
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  .... (52) 

r
n
 = The co-efficient of z

n
 

 
  n

2

n
1

21

1n
2

1n
1nM

2M
2

2
n a

aa

aa
aP1

a1

a
r 






























   .... (54) 

If 0  (i.e., no catastrophe is allowed),  then from equation (50), we have  

 
zλμ

PzλRμ
zr

1

M

1M

10








       .... (55) 

The condition,   1zrlim
1z




 gives 

1M10 λμPλRμ         .... (56) 

As r(z) is analytic, the numerator and denominator of equation (55) must vanish simultaneously for 

z=/1, which is a zero of its denominator. Equating the numerator of equation (55) to zero for z= 

/1 we have  

1,PR 1M
M

0  
     .... (57)  

Relation (56) and (57) gives 

 
1M

M

M1M0
ρ1

ρρ1
P,

ρ1

ρ1
R

 







  

Now, from equation (55), we have   

 
 
























 z1

z1
.

1

1
zr

1M

1M
      .... (58) 

which is a well known result of the M/M/1 queue with finite waiting space M.  

When there is an infinite waiting space, the corresponding expression for r(z) is obtained by letting M 

tends to infinity in equation (58), If (,|z|) 1. 

 
z1

1
zr




         .... (59) 

which is again a well known result of the M/M/1 queue with infinite waiting space.  

Case III Relation (40), on applying the theory of Laplace Transform gives  

 
     

   zHzB

HQ(z)HP(z)HPzHPzHQzH

zR
1

M

0n

n5

M

0n

n4M30201




   .... (60) 

where,  

    
0s1 zBzB


  

   
0s

zLzH


  

       
0s7i1ii zLzLzBzH


    ; i=1, 2, 3, 4, 5.  

 
 

  zdzL
zη

z
zL

1N,1εε2

j

j 










    ; j= 2, 3, 4, 5, 6.  
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1N,1εεkk zLzL


     ; k= 8, 9, 10, 11, 12. 

H' = the constant of Integration.  

The unknown quantities of equation (60) can be evaluated as before.  

 

VII. Applications of the model in biological phenomenon & agriculture:  

1. There are many creatures such as cockroaches, ants, mosquitoes etc whose movement is restricted 

with the change of temperature (environment). As the temperature drops below a critical temperature 

say T0, the movement (production) of such like creatures becomes almost zero. On the other hand, as 

the temperature goes higher than T0 the movement becomes normal. The catastrophes may occur with 

these creatures in both the environmental states i.e., spray etc which make them zero instantaneously. 

Then the number of such like creatures present in any area can be estimated by using the described 

queueing model with environmental change and catastrophes.  

2. In agriculture, if a crop is infected with a particular species of insects due to change in temperature 

(environment), we may use some chemical agents or compounds to treat such type of insects. The 

number of bacteria that destroys the crop, in large part, relies on the effectiveness and amount of the 

chemical reagents used. In other words, the use of the chemical reagents can wipe out the whole of the 

insects or a part of it. The effect of these chemical reagents on bacteria which make them zero 

instantaneously can be regarded as the occurrence of a catastrophe.   

VIII. Conclusion: 

In this paper, we have established the effects of environmental change and catastrophes on the 

limited capacity queueing system. We have obtained some particular cases and steady state solutions. 

Some measures of effectiveness are also obtained.  
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