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ABSTRACT: The inability of conventional regularization techniques such as the Elastic-Net, SCAD and MCP to 

perform optimally in the presence of extremely large or ultra-high dimensional covariates has led to 

development and reliance on filtering technique like screening that have been consistently shown to outperform 

the usual form of regression analysis. These screening techniques (SIS, DC-SIS, and DC – RoSIS) also reduce 

the computational complexity in selecting important covariates from ultrahigh dimensional candidates. Several 

efforts have been made in this regard. In this paper, we combine some regularization techniques (ENET and 

SCAD) with a screening technique (DC – RoSIS) to form the hybrid methods with a view to achieving better 

dimension reduction and variable selection simultaneously. 
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I. INTRODUCTION  

Several approaches for Regression analysis is a form of predictive modeling technique mostly used in 

investigating relationship between a dependent variable and a set of predictors. It is a widely known technique 

for fitting models to data. For the end users, regression analysis is a reliable method of identifying which 

variables have impact on or greatly influence the problem of interest. To significantly explain the functional 

relationship between the predictor variables and the outcome variables one would need to select a parsimonious 

model in other to achieve a good prediction performance. When models are fitted by least squares regression 

each additional useful covariates adds to the actual variance of the final regression equation. In medical studies 

or clinical research, it is common to collect data with numerous variables, however the number of observations 

may be small due to cost or constraints. Datasets with more variables (features) are known as high dimensional. 

When the covariates dimension is high, it is natural to assume that some covariates are irrelevant. Specifically, 

when the number of covariates (predictors)    rivals or exceeds    (the number of observations), we often seek, 

for the sake of interpretation, a smaller set of variables. Hence, we want to our fitting procedure to make only a 

subset of the coefficients large and others small or even zero. These shortcomings are of high-dimensionality in 

regression setting.  The traditional method (OLS) tends to over fit the model also the method becomes unusable 

as the coefficients estimate is no longer unique and its variance becomes infinite.  

A practical approach to deal with such problem involves coefficient shrinkage (regularization) which 

requires fitting a model involving all   predictors. With regularization the estimated coefficients are shrunken 

towards zero relative to the least squares estimates. Depending on what type of shrinkage is performed, these 

procedures are capable of reducing the variance and can also perform variable selection. Some of these 

procedures e.g. the least absolute shrinkage selection Operator (LASSO) enable variable selection such that only 

the important predictor variables stay in the model (Szymczack, et al., 2009)
[1]

. Amongst other are, Screening 

and Elastic-Net, SCAD (smoothly clipped absolute deviation) (Fan and Li, 2001)
[2]

 and the MCP (minimax 

concave penalty) (Zhang, 2010) [3] . 
With the emergence of modern technology for data collection, researchers are now able to collect data 

with extremely large or ultra-high dimensional covariates. Most conventional regularization techniques fail or 

may not perform well due to expediency and algorithmic stability (Fan, Samworth and Wu, 2009)
[4]

. These 

challenges call for a filtering technique like screening, which naturally focuses on the extremes and consistently 

outperform the usual form of regression analysis. These screening techniques further reduces the computational 

complexity in selecting important covariates from ultrahigh dimensional candidates. Such techniques are the SIS 
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(Sure Independence Screening) (Fan and Lv 2008)
[5]

, DC-SIS (SIS based on Distance Correlation) (Li, Zhong 

and Zhu 2012)
[6]

, DC – RoSIS (Robust SIS based on Distance Correlation) (Zhong et al, 2016)
[7]

 . 

When the covariate dimension is high in regression modelling, it is natural to assume that some 

covariates are irrelevant. The presence of irrelevant covariates may substantially deteriorate the precision of 

parameter estimation and the accuracy of response prediction (Altham, 1984)
[8]

. In the context of linear 

regression or generalized linear regression, many regularization methods and general penalty functions have 

been proposed to remove irrelevant covariates and simultaneously estimate the nonzero coefficients. However, 

when there are outliers in the response data, the above-mentioned techniques do not perform optimally. Freue et 

al (2019)
[9]

 introduced penalized M-Estimation technique for high dimensional data with outliers in the response 

data. However, each of these methods have their shortcomings ranging from being impractical, poor 

performance, to algorithm instability. It is expected that incorporating screening with these methods will reduce 

the computational complexity in selecting important covariates from ultrahigh dimensional settings leading to 

improved performance and more stable computations. We perform extensive simulation and on real life data  

demonstration to evaluate the performance of the proposed techniques viz-a-viz existing alternatives. 

 

II. METHODOLOGY 

This section presents the methodology employed in this paper with a focus on the traditional linear regression 

techniques. 

 

Linear Regression 

Consider the multiple linear regression models where   denote the response variable (also called the dependent 

variable) and   ,    …,   , denote the explanatory variables (also called predictors, features or independent 

variables). The relationship between   and   ,    …,    can be expressed as  

                                                                                                

The parameters          are called regression coefficients and ε is the random error term 

Given a data set                         
  of   statistical units, each statistical unit can be expressed as  

                                     

Where    is the  th
 response observation,                 are the unknown parameters and  

         
   . Often those   equations can be rewritten in vector form as   

                                                                                                                                    
-                           

-                    e vector 

-                           

- ε is the error vector 

 

Assumptions of Multiple Linear Regression 

1. Linearity: The relationship between the explanatory variables and the response variable is linear. This is 

the only restriction on the parameters (not explanatory variables), since the explanatory variables are 

regarded as fixed values.  

2. Independence: There are two types of independence. 

 Each combination of explanatory variable and error is independent. 

 The error terms are independent. Therefore,    (     )    for all    . 

3. Normality: The error terms follow normal distribution.  

         
    

   where  

   (

     
     
    
     

) 

4. Equal Variance: Error terms are assume to have equal variances. 

                     
                     

The ordinary Least Squares (OLS) is the traditional technique used to estimate the parameters of the multiple 

linear regression model. The OLS estimator, which minimizes the residual sum of squares, 

                                                                                                                                
is given as 

 ̂                
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Penalization methods 

We consider a linear regression model given with   observations on a dependent variable   having p predictors. 

Penalized regression approaches have been used in cases where      and in the case with      In general, 

the Penalized Least Squares (PLS) is aimed at minimizing Residual Sum of Squares  

               

subject to            where        (specific penalty) is a function of   = (          )
 

and   is a tuning 

parameter. This constrained optimization problem can be solved with the equivalent Lagrangian formulation 

which minimizes. 

                                                                                           
where   is a tuning parameter and controls the strength of shrinkage. For example,   , no penalty is applied 

and we have the ordinary least squares regression. When   gets larger, more weight is given to the penalty term. 

Desirable properties of penalization include variable selection and grouping effect.  

Elastic Net Penalty 

The Elastic Net penalty which is based on a combined penalties of LASSO and Ridge regression penalties. For 

any fixed non-negative            we define the Elastic Net penalty as          ∑ |  |
 
      ∑   

  
    and 

the Elastic Net estimator  ̂   is the minimizer of  

                                                 ∑|  |

 

   

   ∑   
 

 

   

                          

where           are non-negative regularization parameters. 

As in the case of LASSO regression procedure, the amount of shrinkage increases as    or    increases. This 

implies that when either      or       we have  ̂    . There is no explicit formula for the mean 

squared error for the Elastic Net estimator except when      . 

The Minimax Concave Penalty (MCP) 
The MCP (Zhang et al, 2010) is defined as 

          ∑       

 

   

 

where, 

         (|  |  
  

 

   
)     |  |      

   

 
  |  |     , 

where      . Hence, the MCP estimator  ̂    is given as the minimizer of  

                                                                                                      
 

The Smoothly Clipped Absolute Deviation (SCAD) 

The SCAD penalty (Fan and Li, 2001) is 

           ∑      

 

   

 

where 

        |  |       
  |  |     

       

   
    |  |      

       

 
  |  |                

       

where      is the indicator function and          is suggested by Fan and Li (2001). 

The SCAD estimator  ̂     is given as the minimizer of  

                                                                                                 

Penalized M-Estimation 

It is common to for the response variable in a regression problem to contain outliers. The OLS procedure and 

penalized methods discussed earlier do not perform adequately when there are outliers in the response data. One 

robust approach that handles the problem of outliers is M-Estimation. The letter M indicates that M estimation is 

an estimation of the maximum likelihood type. M estimation principle is to minimize the residual function 

                                                      ̂     
 

 (
      ∑      

 
   

 
)                                             

where   is some function with the following properties: 

i.        for all r and has a minimum at 0 
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ii.            for all   

iii.      increases as r increases from 0, but doesn’t get too large as   increases 

If the   function can be differentiated, the M-estimator is said to be a  -type. Otherwise, the M-estimator is said 

to be a  -type. Note that the OLS estimator is a special case of the M-estimator. 

Common   functions are the Tukey’s bisquare, Andrew’s and Huber’s functions. Tukey’s   function is given as  

      

{
 

 
  

 

 
 

  
 

   
 

  
 

   
                     |  |   

  

 
                                              |  |   

  

where   is a constant. 

Huber’s   function is given as  

      {

 

 
  

                                                    |  |   

 |  |  
 

 
                                       |  |   

  

Andrew’s   function is given as  

      {
                                   |  |   

                                              |  |   
  

The M-estimation algorithm using the Tukey’s bisquare function is given as follows: 

1. Estimate regression coefficients    on the data using OLS. 

2. Calculate residual value        ̂ . 

3. Calculate value  ̂                     , where 

                   |                  |. 

4. Calculate value    
  

 ̂ 
. 

5. Calculate the weighted value 

6.    {
[  (

  

     
)

 

]
 

                        |  |       

                                                   |  |       

 

7. Calculate  ̂  using weighted least squares (WLS) method with weights   . 

8. Repeat steps 2-6 to obtain a convergent value of  ̂ . Note that at step 2,    is recalculated based on the 

fitted model in the current iteration. 

 

While the M-estimation technique may be robust against outliers, it doesn’t cater for other problems associated 

with regression such as high- dimensionality and multicollinearity (Freue et al, 2019). In order to solve the 

problem of high-dimensionality or multicollinearity a penalized M-Estimation procedure may be used. 

A penalized M-Estimator is defined as the minimizer of  

                                                   (
      ∑      

 
   

 
)                                                 

Freue et al (2019) introduced efficient algorithms for penalized M-Estimators using the LASSO and Elastic-Net 

penalties. The pense R package contains implementation of M-Estimation using the LASSO and Elastic-Net 

penalties. 

Robust Variable Screening based on Distance Correlation (DC-RoSIS) 

In this study, a robust feature screening procedure for regression models using distance correlation proposed by 

Zhong et al (2016) will be adopted. The definition of distance correlation according to Szekely et al (2007) is 

given as follows: the distance covariance between random variables   and   is 

                                                                                                                             

where     (|   ̃||   ̃|)     (|   ̃||   ̃|)     (|   ̃||   ̃|)    and ( ̃  ̃)  is an 

independent copy of      . The distance correlation between   and   is 

                                                      
         

√                   
                      

Szekely et al (2007) pointed out that                if and only if   and   are independent and             

is strictly increasing in the absolute value of the Pearson correlation between   and  . Motivated by these 

properties, Li et al (2012) proposed a sure independence screening to rank all predictors using their distance 

correlations with the response variable, termed DC-SIS, and proved its sure screening property for ultrahigh-

dimensional data. 
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Following Zhong et al (2016), let    denote the     predictor with             , this work proposes to 

quantify the importance of    is through its distance correlation with the marginal distribution function of   , 

denoted by     . That is, 

                                                                                                                                     
where                              denotes an indicator function. This is a modification of the marginal 

utility in Li et al (2012) in that here       is used instead of  . 

The distance correlation has several advantages compared with existing measurements:                     

if and only if    and   are independent, and following Li et al (2012), we can see that the screening procedure is 

model-free and hence is applicable for both dense and sparse situations ; since      is a bounded function for 

all types of  , it can be expected that the procedure has a reliable performance when the response is the heavy-

tailed and when extreme values are present in the response values; If one suspects that the covariates also 

contain some extreme values, then one can use   
                      to rank the importance of the   , 

where                        
Zhong et al (2016) showed how to implement the marginal utility in the screening procedure as follows. Let 

                       be a random sample from the population      . The distance covariance between    and 

      is first estimated through the moment estimation method, 

                                            ̂             ̂     ̂      ̂                                  
where 

 ̂    
 

  
∑∑|        ||             |

 

   

 

   

  

 ̂    
 

  
∑ ∑|        |

 

  
∑∑|             |

 

   

 

   

 

   

 

   

  

and 

 ̂    
 

  
∑∑ ∑|        ||             |

 

   

 

   

 

   

 

are the corresponding estimators of                                ∑   
             We estimate    with 

                          ̂        ̂           
     ̂          

√     ̂              ̂ (         )

                    

larger than a user-specified threshold. Let  ̂         ̂                     . The independence 

screening procedure retains the covariates with the   values for some pre-specified thresholds     and 0 

     . The constants c and κ control the signal strength (see Zhong et al, 2016). Zhong et al (2016) referred 

to this approach as the distance correlation based robust independence screening procedure (DC-RoSIS). 

Additionally, in this study, an estimate of  ̂ 
  which is based on the marginal distribution function of both   and 

   is introduced and is defined as 

                ̂ 
       ̂             

     ̂ (          )

√     ̂ (           )      ̂ (         )

                                               

where, 

                                  ̂               ̂   
    ̂   

    ̂   
                                      

 ̂   
  

 

  
∑∑|           (   )||             |

 

   

 

   

  

 ̂   
  

 

  
∑ ∑|           (   )|

 

  
∑∑|             |

 

   

 

   

 

   

 

   

  

and 

 ̂   
  

 

  
∑ ∑∑|           (   )||             |

 

   

 

   

 

   

 

The use of  ̂ 
  may produce better results if the covariates also contain some extreme values. 
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Sure screening property of DC-RoSIS 

We first state the consistency of   ̂  screening property of the DC-RoSIS procedure, which paves the road to 

proving the sure screening property of the DC-RoSIS procedure.  

Theorem 1. Under the condition (C1) that there exist positive constants    and   such that 

         
       |  |                  , for any          , there exist positive constants 

   and    such that 

  (        |  ̂    |      )   ( [   {    
        }             

  ]), 

We remark here that to derive the consistency of the estimated marginal utility, we do not need any moment 

condition on the response. To prove the sure screening property, we make use of further assumption (C6) - the 

marginal utility satisfies                , for some constants                      . 

Condition (C6) allows the minimal signal of the active covariates to converge to zero as the sample size 

diverges, while it requires the minimum signal of active covariates be not too small. 

Theorem 2 (Sure Screening Property). Under (C6) and the conditions in Theorem 1, it follows that       

  ̂                             
             

    , where    is the cardinality of  . Thus,       
  ̂      as      . 

 

III. THE PROPOSED DC-ROSIS PENALIZED REGRESSION 

The following gives detailed explanation of the proposed methods.  

The ENET-DCRoSIS Penalized Regression 

Considering that the earlier definitions of  ,    and    remain unchanged. Then, the ENET-DCRoSIS estimator 

 ̂             is given as 

     ̂                                            ∑|   
|

 

   

   ∑   
 

 

   

          

which is a minimization problem that can be solved by an efficient optimization algorithm. 

The SCAD-DCRoSIS Penalized Regression 

Given that the earlier definitions of  ,    and    remain unchanged. Then, the SCAD-DCRoSIS estimator 

 ̂             is given as 

         ̂                                          ∑  (   
)

 

   

                         

Where, 

  (   
)   |   

|       
  |   

|  
   

    

 

   
 (  |   

|    )  
       

 
 (|   

|    )  

for some         and      is the indicator function. The minimization problem in (22) can be solved using 

coordinate descent algorithms. 

 

The ENET-M-DCRoSIS Penalized Regression 

Given that  ,    and    are as earlier defined. Then, the ENET-M-DCRoSIS estimator  ̂               is 

given as 

       ̂                            (
      

 
)    ∑|   

|

 

   

   ∑   
 

 

   

                 

where      is the Tukey’s bisquare function. 

The weighted ENET least squares technique proposed by Freue et al (2019) can be used to find the solution to 

the minimization problem.  
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IV. ANALYSIS AND RESULTS 

This section presents details description of the proposed ENET-DCRoSIS, ENET-M-DCRoSIS and SCAD-

DCRoSIS methods. The section also shows the results of the evaluation of the proposed hybrid methods against 

themselves and other classical methods under different sample size settings and outlier severity. It is worthy to 

note that all implementations of the methods, simulations and computations were carried out using R(R Core 

Team, 2019) while tables and plots are used to present the results.  

Simulation Design 

The performances of the ENET-DCRoSIS, ENET-M-DCRoSIS and SCAD-DCRoSIS for variable selection and 

estimation are evaluated via simulation at various sample sizes and level of contamination by outliers. Each 

simulated data consists of a training set for fitting the model, a validation set for selecting the tuning parameters, 

and a test set on which the test errors are computed for evaluation of performance. The notation ·/·/· is used to 

represent the number of observations in the training, validation and test set, respectively. 

Case 1 

The true underlying regression model from which we simulate data is given by 

                                                                                                               

In this case, the simulated data sets consist of           observations and 200 predictors and we set   

      ⏟  
  

      ⏟  
   

 ,      ,      and           |   | for all    . 

Case 2 

In this case, a linear model only is considered and is 

                                   

  (          )
 

was generated from       , where   (   )   
 with        |   | . Here,   was set to 

1000 and          and    . It should be noted that out of the 1000 generated covariates, only three (      

and   ) are useful in the model. Hence,   was set such that                          .  

Case 3: In this case, the simulated data sets consist of           observations and 1000 predictors and we set 

        ⏟  
   

      ⏟  
  

      ⏟  
   

      ⏟  
  

 ,            ,     and           |   | for all    . In this case there 

are 1000 sparse grouped predictors with only 30 being relevant. 

Case 4: In this case, the simulated data sets consisting of           observations and 1000 predictors and we 

set         ⏟  
  

      ⏟  
   

 ,             and     . The predictors   are generated as follows: 

        
 ,           ,        , 

        
 ,           ,         , 

        
 ,           ,          . 

   are independent identically distributed (iid)       ,  for             and   
  are iid          . This 

setting implies there are three equally important groups with each containing 5 members. Under each case, the 

situation where the observations on the response variable   contain outliers are also considered. In order to 

contaminate   with outliers, the error   , 90% of the errors were independently generated from        and 

while the remaining 10% were generated from        . 
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The proposed ENET-DCRoSIS, ENET-M-DCRoSIS and SCAD-DCRoSIS were applied to estimate  . To 

facilitate comparison, the classical LASSO, ENET and SCAD were applied too. The data simulation, variable 

screening and estimation were replicated 100 times and the performance of the technique is evaluated based on 

the following: 

  : the average number of non-zero estimated regression coefficients 

   : the absolute difference between   and the actual size of the model defined here by  |    |, 

where    is the true model size. 

  : the average number of truly non-zero coefficients correctly estimated to be non-zero 

   : the average number of truly zero coefficients incorrectly estimated to be non-zero 

     : prediction mean-squared errors defined as 
 

     
‖           

  ̂‖
 
  

      : mean-squared errors of estimates defined as ‖ ̂   ‖
 
 

   : the total average absolute estimation error of  ̂, defined by ∑ | ( ̂ )    |
 

   
  

Case 1 

The simulation results are presented in this section. The results are based on 100 replications and the evaluation 

criteria are                            . 

 

Table 4.1: Simulation results for case 1 at                 ,  with no outliers, based on 100 replications 

 

 

 

               AE      

     

ENET-DCRoSIS 29 9 16 13 189.554 27.722 184.731 

SCAD-DCRoSIS 19 1 13 6 348.516 26.994 270.275 

ENET-M-DCRoSIS 26 6 16 10 192.257 26.131 179.420 

ENET 41 21 20 21 23.508 12.566 25.243 

SCAD 17 3 10 7 547.868 29.072 463.314 

      

ENET-DCRoSIS 34 14 20 14 3.050 4.859 6.867 

SCAD-DCRoSIS 20 0 20 0 2.050 3.271 5.810 

ENET-M-DCRoSIS 32 12 20 12 3.218 4.876 6.683 

ENET 41 21 20 21 3.176 3.319 6.943 

SCAD 20 0 20 0 1.638 1.790 5.288 

      

ENET-DCRoSIS 32 12 20 12 1.638 1.902 5.171 

SCAD-DCRoSIS 20 0 20 0 0.998 0.770 4.802 

ENET-M-DCRoSIS 34 14 20 14 1.578 2.369 5.176 

ENET 35 15 20 15 1.703 1.584 5.467 

SCAD 20 0 20 0 0.957 0.499 4.753 

      ENET-DCRoSIS 30 10 20 10 1.079 1.171 4.801 
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SCAD-DCRoSIS 20 0 20 0 0.751 0.514 4.445 

ENET-M-DCRoSIS 35 15 20 15 1.063 2.025 4.985 

ENET 32 12 20 12 1.073 1.097 4.766 

SCAD 20 0 20 0 0.741 0.439 4.447 

 

Simulation results when there are no outliers in the response variable for case 1 are given in Table 4.1. The table 

contains medians of  ,   ,  ,   ,     ,    and      over 100 replications at sample sizes 50, 100, 150 and 

200. The true size of the model for this case is 20. At sample size of 100. In terms of variable selection SCAD 

and SCAD-DCRoSIS all select correctly the important variables and correctly leave out the unimportant ones. 

However, SCAD-DCRoSIS outperforms SCAD in terms of estimation and prediction at sample size 50. Also, 

ENET tend to select larger models compared to the proposed ENET-DCRoSIS and ENET-M-DCRoSIS. Similar 

behaviour can be observed at sample sizes 150 and 200. 

 

Table 4.2: Simulation results for case 1 at                 ,  with 10% outliers in  , based on 100 

replications 

 

 

               AE      

     

ENET-DCRoSIS 28 8 15 13 225.676 30.699 271.707 

SCAD-DCRoSIS 21 1 12 9 471.181 32.602 433.153 

ENET-M-DCRoSIS 24 4 16 8 154.718 14.976 149.378 

ENET 47 27 19 28 143.432 28.087 200.692 

SCAD 29 9 14 15 573.576 27.475 469.810 

      

ENET-DCRoSIS 34 14 20 14 31.044 8.751 73.527 

SCAD-DCRoSIS 27 7 20 9 70.970 8.346 84.054 

ENET-M-DCRoSIS 30 10 20 11 1.246 3.635 47.332 

ENET 40 20 20 20 27.107 7.626 70.118 

SCAD 41 21 20 21 93.324 10.848 101.754 

      

ENET-DCRoSIS 32 12 20 12 10.062 3.908 52.155 

SCAD-DCRoSIS 23 3 20 3 14.289 4.305 50.453 

ENET-M-DCRoSIS 32 12 20 12 0.526 1.526 44.541 

ENET 34 14 20 14 9.714 3..320 51.821 

SCAD 47 27 20 27 38.879 8.527 63.101 

      

ENET-DCRoSIS 31 11 20 11 5.602 2.731 47.991 

SCAD-DCRoSIS 20 0 20 0 7.503 2.627 46.542 

ENET-M-DCRoSIS 29 9 20 9 0.363 1.323 44.757 
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ENET 30 10 20 10 5.297 2.478 48.238 

SCAD 31 11 20 11 10.934 5.009 49.401 

 

Simulation results for case 1 with outliers introduced into the response are given in Table 4.2. At sample size of 

100, ENET-M-DCRoSIS has the best performance in terms of prediction and estimation. SCAD-DCRoSIS 

outperforms SCAD in terms of estimation and prediction while SCAD seems to be strongly affected by presence 

of outliers.  At sample sizes 150 and 200, ENET-M-DCRoSIS significantly outperforms others showing that it is 

superior when outliers are present. 

 

Case 2 

The simulation results are presented in this section. The results are based on 100 replications and the evaluation 

criteria are                           . 

Simulation results when there are no outliers in the response variable for case 2 are given in Table 4.3. The true 

size of this model is 3. At sample size 50, ENET-M-DCRoSIS outperforms the rest in terms of prediction 

accuracy while the SCAD-DCRoSIS outperforms the others in terms of estimation accuracy variable selection. 

At sample sizes 100, 150 and 200, SCAD-DCRoSIS has the best performance in terms of variable selection, 

estimation and prediction. In this setting, all methods correctly selects the important variables into the model, 

however, larger models are selected by ENET and SCAD. 

 

Table 4.4 present simulation results for case 2 with 10% outliers introduced into the response variable for case 

2. Across all sample sizes ENET-M-DCRoSIS outperform the rest in terms of variable selection, prediction and 

estimation accuracy while SCAD produced the worst performance indicating that they don’t do well in the 

presence of outliers. In this setting also, SCAD always select larger models while all the proposed methods 

always select more parsimonious models compared to existing methods. 

 

Table 4.3: Simulation results for case 2 at                 ,  with no outliers, based on 100 replications 

 

 

               AE      

     

ENET-DCRoSIS 10 7 3 8 2.104 3.480 6.483 

SCAD-DCRoSIS 9 6 3 6 1.799 2.304 5.485 

ENET-M-

DCRoSIS 
7 4 3 4 1.353 

2.646 
5.573 

ENET 17 14 3 14 1.826 3.503 5.925 

SCAD 17 14 3 14 2.481 2.603 5.737 

      

ENET-DCRoSIS 11 8 3 8 0.741 2.053 4.805 

SCAD-DCRoSIS 8 5 3 5 0.301 0.909 4.209 

ENET-M-

DCRoSIS 
9 6 3 6 0.525 

1.500 
4.555 

ENET 21 18 3 18 0.938 2.355 4.928 

SCAD 19 16 3 16 0.466 1.297 4.408 

      

ENET-DCRoSIS 13 10 3 10 0.519 1.564 4.437 

SCAD-DCRoSIS 6 3 3 3 0.109 0.420 4.108 



Hybrid Regression Estimation And Feature Selection Technique Using Robust Variable .. 

DOI: 10.35629/4767-11050116                                            www.ijmsi.org                                               11 | Page 

ENET-M-

DCRoSIS 
9 6 3 6 0.342 

1.280 
4.214 

ENET 17 14 3 14 0.500 1.633 4.400 

SCAD 12 9 3 9 0.181 0.846 4.305 

      

ENET-DCRoSIS 12 9 3 9 0.336 1.340 4.230 

SCAD-DCRoSIS 20 0 20 0 7.503 2.627 46.542 

ENET-M-

DCRoSIS 
9 6 3 6 0.232 1.096 4.271 

ENET 17 14 3 14 0.346 1.405 4.436 

SCAD 9 6 3 6 0.110 0.480 4.086 

 

Table 4.4: Simulation results for case 2 at                 ,  with 10% outliers in  , based on 100 

replications 

 

 

               AE      

     

ENET-DCRoSIS 9 6 2 7 10.196 7.336 55.758 

SCAD-DCRoSIS 14 11 1 13 39.305 15.409 76.091 

ENET-M-DCRoSIS 6 3 3 3 0.338 1.654 45.207 

ENET 9 6 1 8 12.762 7.703 59.101 

SCAD 26 23 2 24 57.192 15.742 92.875 

      

ENET-DCRoSIS 13 10 3 10 6.562 5.785 50.965 

SCAD-DCRoSIS 29 26 2 27 33.056 15.089 71.621 

ENET-M-DCRoSIS 8 5 3 5 0.101 0.795 44.190 

ENET 14 11 2 12 7.075 6.079 51.502 

SCAD 47 44 2 45 54.290 17.512 91.307 

      

ENET-DCRoSIS 14 11 3 11 4.006 4.713 47.573 

SCAD-DCRoSIS 30 27 3 27 17.286 11.647 58.306 

ENET-M-DCRoSIS 9 6 3 6 0.065 0.642 43.487 

ENET 17 14 3 14 4.912 5.090 49.155 

SCAD 64 61 2 61 46.938 17.123 80.462 

      

ENET-DCRoSIS 13 10 3 10 1.904 3.143 45.751 

SCAD-DCRoSIS 33 30 3 30 6.480 6.796 47.835 
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ENET-M-DCRoSIS 9 6 3 6 0.049 0.478 44.033 

ENET 18 15 3 15 2.047 3.250 46.199 

SCAD 79 76 3 76 11.007 9.217 53.441 

 

Case 3 

Simulation results when there are no outliers in the response variable for case 3 are given in Table 4.5. 

The true size of this model is 30 but the values of the coefficients are relatively small and the importance of the 

corresponding predictors may be harder to detect. At sample size 50,100, and 150, the ENET outperforms the 

rest in terms of prediction, estimation accuracy and selection of important variables. However, the ENET always 

select larger models. At sample size 200, SCAD and SCAD-DCRoSIS have the best performance in terms of 

variable selection, estimation and prediction. In this setting, all the methods except ENET correctly selects the 

important variables into the model at small sample sizes. This is an indication that the ENET based methods are 

quite conservative in terms of variable selection. 

 

Table 4.5: Simulation results for case 3 at                 ,  with no outliers, based on 100 replications 

 

 

               AE      

     

ENET-DCRoSIS 28 2 10 17 117.944 50.0367 203.440 

SCAD-DCRoSIS 14 16 7 8 162.370 49.502 249.613 

ENET-M-DCRoSIS 25 5 10 14 119.573 44.590 182.222 

ENET 71 41 19 52 94.920 48.960 168.271 

SCAD 18 12 7 9 125.117 53.103 249.119 

      

ENET-DCRoSIS 48 18 23 25 48.661 24.048 57.091 

SCAD-DCRoSIS 29 1 17 12 101.739 23.268 91.621 

ENET-M-DCRoSIS 41 11 23 18 51.888 20.196 53.237 

ENET 82 52 30 53 18.195 16.543 22.953 

SCAD 34 4 15 19 145.221 36.416 125.094 

      

ENET-DCRoSIS 55 25 28 27 18.253 11.594 19.518 

SCAD-DCRoSIS 37 7 27 10 18.981 6.790 14.961 

ENET-M-DCRoSIS 47 17 28 19 16.013 8.433 15.629 

ENET 77 47 30 47 4.576 7.208 8.567 

SCAD 50 20 22 28 71.154 21.348 39.160 

      

ENET-DCRoSIS 55 25 30 25 4.711 5.525 7.049 

SCAD-DCRoSIS 33 3 30 3 1.875 2.657 5.695 

ENET-M-DCRoSIS 49 19 29 20 7.274 5.117 8.364 

ENET 73 43 30 43 2.684 4.927 6.330 
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SCAD 32 2 30 2 1.170 0.832 4.804 

         

 

Table 4.6 present simulation results for case 3 with 10% outliers introduced into the response variable for case 

2. Across all sample sizes ENET-M-DCRoSIS outperform the rest in terms of prediction and estimation 

accuracy while SCAD the worst performance. 

 

Table 4.6: Simulation results for case 3 at                 ,  with 10% outliers in  , based on 100 

replications 

 

 

               AE      

     

ENET-DCRoSIS 23 7 8 14 126.691 53.096 280.850 

SCAD-DCRoSIS 18 12 6 13 269.223 65.477 390.465 

ENET-M-DCRoSIS 19 11 9 9 108.432 36.328 196.746 

ENET 109 79 20 89 102.616 80.202 222.437 

SCAD 36 6 0 36 829.179 93.528 1045.335 

      

ENET-DCRoSIS 48 18 22 26 67.297 30.256 125.231 

SCAD-DCRoSIS 38 8 16 22 176.564 37.161 176.564 

ENET-M-DCRoSIS 36 6 22 14 45.357 12.452 80.393 

ENET 86 56 27 60 57.251 32.977 124.411 

SCAD 62 32 2 60 706.323 100.389 875.419 

      

ENET-DCRoSIS 56 26 27 29 33.883 17.597 78.167 

SCAD-DCRoSIS 47 17 22 25 79.892 21.809 102.168 

ENET-M-DCRoSIS 44 14 27 17 17.282 6.795 55.770 

ENET 85 55 30 55 30.211 19.243 77.232 

SCAD 80 50 7 73 498.179 80.622 576.196 

      

ENET-DCRoSIS 57 27 29 28 13.239 9.682 55.718 

SCAD-DCRoSIS 50 20 29 22 25.882 9.305 59.041 

ENET-M-DCRoSIS 49 19 29 19 5.486 3.556 46.806 

ENET 74 44 30 44 12.825 9.727 55.680 

SCAD 85 55 21 63 96.376 26.282 103.093 
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Case 4 

Table 4.7: Simulation results for case 4 at                 ,  with no outliers, based on 100 replications 

 

 

               AE      

     

ENET-DCRoSIS 18 3 15 3 0.570 4.375 4.908 

SCAD-DCRoSIS 3 12 3 0 531.851 6.855 4.635 

ENET-M-DCRoSIS 17 2 14 4 37.796 7.733 5.027 

ENET 21 6 15 6 0.344 1.653 4.786 

SCAD 3 12 3 0 538.689 71.909 4.378 

      

ENET-DCRoSIS 16 1 15 1 0.073 0.286 4.281 

SCAD-DCRoSIS 3 12 3 0 538.511 7.292 4.318 

ENET-M-DCRoSIS 19 4 15 4 3.712 7.721 4.416 

ENET 17 2 15 2 0.066 0.277 4.151 

SCAD 3 12 3 0 539.963 71.878 4.371 

      

ENET-DCRoSIS 16 1 15 1 0.055 0.266 4.220 

SCAD-DCRoSIS 3 12 3 0 537.645 8.817 4.023 

ENET-M-DCRoSIS 19 4 15 4 2.710 6.232 4.376 

ENET 16 1 15 1 0.043 0.256 4.024 

SCAD 3 12 3 0 538.411 71.925 4.025 

      

ENET-DCRoSIS 15 0 15 0 0.031 0.163 3.970 

SCAD-DCRoSIS 3 12 3 0 537.110 5.815 4.046 

ENET-M-DCRoSIS 21 6 15 8 2.127 3.816 4.220 

ENET 16 1 15 1 0.031 0.300 4.083 

SCAD 15 0 7 8 302.801 5.810 4.188 

 

Simulation results when there are no outliers in the response variable for case 4 are given in Table 4.6. 

The true size of this model here is 15 and the important predictors are divided into three groups such that 

predictors within each group are strongly correlated. Across all sample sizes ENET, ENET-DCRoSIS and 

ENET-M-DCRoSIS outperforms the rest in terms of variable selection and estimation. However, all the 

methods perform similarly with respect to prediction. Also, SCAD and SCAD-DCRoSIS tend to select one of 

the important variables in each group. Only, ENET, ENET- DCRoSIS and ENET-M-DCRoSIS have the ability 

to do group selection. 
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Table 4.8: Simulation results for case 4 at                 ,  with 10% outliers in  , based on 100 

replications 

 

 

               AE      

     

ENET-DCRoSIS 18 3 15 3 3.767 6.484 51.826 

SCAD-DCRoSIS 3 12 3 0 510.214 12.619 45.612 

ENET-M-DCRoSIS 11 4 6 5 292.831 6.807 44.241 

ENET 29 14 15 14 7.010 9.927 61.795 

SCAD 3 12 3 0 537.854 73.312 43.118 

      

ENET-DCRoSIS 16 1 15 1 0.391 0.654 45.451 

SCAD-DCRoSIS 3 12 3 0 537.374 12.021 42.660 

ENET-M-DCRoSIS 18 3 15 3 2.996 4.215 43.917 

ENET 18 3 15 3 0.599 1.128 45.146 

SCAD 3 12 3 0 543.058 72.047 41.198 

      

ENET-DCRoSIS 16 1 15 1 0.203 0.386 44.564 

SCAD-DCRoSIS 3 12 3 0 530.967 10.459 41.530 

ENET-M-DCRoSIS 20 5 15 5 2.397 4.500 44.101 

ENET 16 1 15 1 0.203 0.561 44.648 

SCAD 3 12 3 0 537.219 71.810 40.594 

      

ENET-DCRoSIS 16 1 15 1 0.124 0.198 44.222 

SCAD-DCRoSIS 3 12 3 0 537.457 12.747 41.320 

ENET-M-DCRoSIS 20 5 15 5 1.501 3.806 43.967 

ENET 16 1 15 1 0.131 0.235 44.447 

SCAD 3 12 3 0 543.027 71.980 40.471 

 

Table 4.8 present simulation results for case 4 with 10% outliers introduced into the response variable 

for case 4. Across all sample sizes ENET- DCRoSIS outperforms the rest in terms of variable selection and 

estimation while SCAD has the worst performance in all criteria. Just like when there were no outliers, SCAD 

and SCAD-DCRoSIS select one of the important variables in each group while ENET, ENET- DCRoSIS and 

ENET-M-DCRoSIS are able to do group variable selection. 

 

V. CONCLUSION  

The presence of outliers can prevent the ENET and existing screening techniques from performing 

optimally. This creates the need to generate new hybrid approaches that improve the performance of legacy 

screening techniques. To achieve this, the ENET and SCAD have been combined with a robust screening 

technique that can do well in the presence of outliers. Thus, achieving better dimension reduction and variable 

selection simultaneously. Our numerous simulations show that our proposed ENET-M-DCRoSIS significantly 
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outperforms the rest in terms of prediction and estimation accuracy showing that it is superior when outliers are 

present while SCAD has the worst performance. 
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